33 research outputs found

    Ensaio Acerca de Inquietações Filosóficas: três docentes atravessados pela experiência do ensino remoto.

    Get PDF
    O presente ensaio é fruto das inquietações e aflições que transpassam as vidas de professores e professora de filosofia, coetâneos da pandemia de COVID 19 que acomete os nossos dias. Devidamente isolados, esparramados em diferentes cidades paulistas, escrevemos a seis mãos este trabalho na tentativa de reflexionar acerca das questões que emergem em decorrência da atividade professoral em um cenário pandêmico. A preocupação com o ensino de filosofia durante a pandemia, é o que nos une. Todavia, as questões que surgem a reboque do status quo, também encontrar-se-ão presentes em nossa construção reflexiva. A contrapelo escrevemos, num ato de resistência aos dias sombrios que (sobre)vivemos, tendo como objeto a nossa própria prática e para quem sabe, conseguir dar novos sentidos à nossa subjetividade

    Mosquito-Borne Viral Diseases: Control and Prevention in the Genomics Era

    Get PDF
    Mosquito-borne viral diseases are infections transmitted by the bite of infected mosquitoes. The burden of these diseases is highest in tropical and subtropical areas and they disproportionately affect the poorest populations. Since 2014, major outbreaks of dengue, chikungunya, yellow fever and Zika have afflicted populations and overwhelmed health systems in many countries. Distribution of mosquito-borne diseases is determined by complex demographic, environmental and social factors, causing diseases to emerge in countries where they were previously unknown. Coupling genomic diagnostics and epidemiology to innovative digital disease detection platforms raises the possibility of an open, global, digital pathogen surveillance system. Considering pathogen surveillance in mind, real-time sequencing, bioinformatics tools and the combination of genomic and epidemiological data from viral infections can give essential information for understanding the past and the future of an epidemic, making possible to establish an effective surveillance framework on tracking the spread of infections to other geographic regions

    Genomic epidemiology unveils the dynamics and spatial corridor behind the Yellow Fever virus outbreak in Southern Brazil

    Get PDF
    Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control

    Predictive factors of the contracture test for diagnosing malignant hyperthermia in a Brazilian population sample: a retrospective observational study

    No full text
    Introduction: Malignant Hyperthermia (MH) is a pharmacogenetic, hereditary and autosomal dominant syndrome triggered by halogenates/succinylcholine. The In Vitro Contracture Test (IVCT) is the gold standard diagnostic test for MH, and it evaluates abnormal skeletal muscle reactions of susceptible individuals (earlier/greater contracture) when exposed to caffeine/halothane. MH susceptibility episodes and IVCT seem to be related to individual features. Objective: To assess variables that correlate with IVCT in Brazilian patients referred for MH investigation due to a history of personal/family MH. Methods: We examined IVCTs of 80 patients investigated for MH between 2004‒2019. We recorded clinical data (age, sex, presence of muscle weakness or myopathy with muscle biopsy showing cores, genetic evaluation, IVCT result) and IVCT features (initial and final maximum contraction, caffeine/halothane concentration triggering contracture of 0.2g, contracture at caffeine concentration of 2 and 32 mmoL and at 2% halothane, and contraction after 100 Hz stimulation). Results: Mean age of the sample was 35±13.3 years, and most of the subjects were female (n=43 or 54%) and MH susceptible (60%). Of the 20 subjects undergoing genetic investigation, 65% showed variants in RYR1/CACNA1S genes. We found no difference between the positive and negative IVCT groups regarding age, sex, number of probands, presence of muscle weakness or myopathy with muscle biopsy showing cores. Regression analysis revealed that the best predictors of positive IVCT were male sex (+12%), absence of muscle weakness (+20%), and personal MH background (+17%). Conclusions: Positive IVCT results have been correlated to male probands, in accordance with early publications. Furthermore, normal muscle strength has been confirmed as a significant predictor of positive IVCT while investigating suspected MH cases.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)0012021_06180-

    Short report: Introduction of chikungunya virus ECSA genotype into the Brazilian Midwest and its dispersion through the Americas.

    No full text
    Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas

    Circulation of chikungunya virus East/Central/South African lineage in Rio de Janeiro, Brazil.

    No full text
    The emergence of chikungunya virus (CHIKV) has raised serious concerns due to the virus' rapid dissemination into new geographic areas and the clinical features associated with infection. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. Our phylogenetic reconstructions indicated the circulation of the East-Central-South-African (ECSA) lineage in Rio de Janeiro. Time-measured phylogenetic analysis combined with CHIKV notified case numbers revealed the ECSA lineage was introduced in Rio de Janeiro around June 2015 (95% Bayesian credible interval: May to July 2015) indicating the virus was circulating unnoticed for 5 months before the first reports of CHIKV autochthonous transmissions in Rio de Janeiro, in November 2015. These findings reinforce that continued genomic surveillance strategies are needed to assist in the monitoring and understanding of arbovirus epidemics, which might help to attenuate public health impact of infectious diseases

    Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2020-03-10T15:58:07Z No. of bitstreams: 1 MartaGiovanetti_LCAlcantara_etal_IOC_2020.pdf: 1148514 bytes, checksum: 32d98df74817f86ea43988acd886f4e0 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2020-03-10T16:31:16Z (GMT) No. of bitstreams: 1 MartaGiovanetti_LCAlcantara_etal_IOC_2020.pdf: 1148514 bytes, checksum: 32d98df74817f86ea43988acd886f4e0 (MD5)Made available in DSpace on 2020-03-10T16:31:16Z (GMT). No. of bitstreams: 1 MartaGiovanetti_LCAlcantara_etal_IOC_2020.pdf: 1148514 bytes, checksum: 32d98df74817f86ea43988acd886f4e0 (MD5) Previous issue date: 2019Laboratório Central de Saúde Pública. Departamento de Virologia, Salvador, BA, Brasil.Laboratório Central de Saúde Pública. Departamento de Virologia, Salvador, BA, Brasil.Ministério da Saúde. Coordenação Geral de Vigilância de Arboviroses (CGARB). Brasília, DF, BrasilUniversidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil / University of KwaZulu- Natal, Durban. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.Fundação Oswaldo Cruz. Instituto Gonçalo Muniz. Laboratório de Patologia Experimental. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.Laboratório Central de Saúde Pública. Departamento de Virologia, Salvador, BA, Brasil.Universidade Estadual de Feira de Santana. Feira de Santana, BA, Brasil / Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brasil.Organização Pan-Americana da Saúde/Organização Mundial da Saúde. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças Transmissíveis. Brasília, DF, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.Universidade Federal do Mato Grosso do Sul. MS, Brasil / Fundação Oswaldo Cruz. Coordenação de Saúde Laboratórios de Vigilância e Referência. Rio de Janeiro, RJ, Brasil.University of Oxford. Oxford, UK.University of KwaZulu- Natal, Durban. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Oxford, UK.University of KwaZulu- Natal, Durban. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brasil.University of Oxford. Department of Zoology. Oxford, UK.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Laboratório de Genética Celular e Molecular. Belo Horizonte, MG, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrasilMinistério da Saúde. Coordenação Geral de Vigilância de Arboviroses (CGARB). Brasília, DF, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrasilBetween June 2017 and August 2018, several municipalities located in Bahia state (Brazil) reported a large increase in the number of patients presenting with febrile illness similar to that of arboviral infections. Using a combination of portable whole genome sequencing, molecular clock and epidemiological analyses, we revealed the return of the CHIKV-ECSA genotype into Bahia. Our results show local persistence of lineages in some municipalities and the re-introduction of new epidemiological strains from different Brazilian regions, highlighting a complex dynamic of transmission between epidemic seasons and sampled locations. Estimated climate-driven transmission potential of CHIKV remained at similar levels throughout the years, such that large reductions in the total number of confirmed cases suggests a slow, but gradual accumulation of herd-immunity over the 4 years of the epidemic in Bahia after its introduction in 2014. Bahia remains a reservoir of the genetic diversity of CHIKV in the Americas, and genomic surveillance strategies are essential to assist in monitoring and understanding arboviral transmission and persistence both locally and over large distances

    Persistence of chikungunya ECSA genotype and local outbreak in an upper medium class neighborhood in Northeast Brazil.

    No full text
    The chikungunya East/Central/South/Africa virus lineage (CHIKV-ECSA) was first detected in Brazil in the municipality of Feira de Santana (FS) by mid 2014. Following that, a large number of CHIKV cases have been notified in FS, which is the second-most populous city in Bahia state, northeastern Brazil, and plays an important role on the spread to other Brazilian states due to climate conditions and the abundance of competent vectors. To better understand CHIKV dynamics in Bahia state, we generated 5 complete genome sequences from a local outbreak raised in Serraria Brasil, a neighbourhood in FS, by next-generation sequencing using Illumina approach. Phylogenetic reconstructions revealed that the new FS genomes belongs to the ECSA genotype and falls within a single strongly supported monophyletic clade that includes other older CHIKV sequences from the same location, suggesting the persistence of the virus during distinct epidemic seasons. We also performed minor variants analysis and found a small number of SNPs per sample (b_29L and e_45SR = 16 SNPs, c_29SR = 29 and d_45PL and f_45FL = 21 SNPs). Out of the 93 SNPs found, 71 are synonymous, 21 are non-synonymous and one generated a stop codon. Although those mutations are not related to the increase of virus replication and/or infectivity, some SNPs were found in non-structural proteins which may have an effect on viral evasion from the mammal immunological system. These findings reinforce the needing of further studies on those variants and of continued genomic surveillance strategies to track viral adaptations and to monitor CHIKV epidemics for improved public health control

    The ongoing COVID-19 epidemic in Minas Gerais, Brazil: insights from epidemiological data and SARS-CoV-2 whole genome sequencing.

    No full text
    The recent emergence of a previously unknown coronavirus (SARS-CoV-2), first confirmed in the city of Wuhan in China in December 2019, has caused serious public health and economic issues due to its rapid dissemination worldwide. Although 61,888 confirmed cases had been reported in Brazil by 28 April 2020, little was known about the SARS-CoV-2 epidemic in the country. To better understand the recent epidemic in the second most populous state in southeast Brazil (Minas Gerais, MG), we looked at existing epidemiological data from 3 states and sequenced 40 complete genomes from MG cases using Nanopore. We found evidence of multiple independent introductions from outside MG, both from genome analyses and the overly dispersed distribution of reported cases and deaths. Epidemiological estimates of the reproductive number using different data sources and theoretical assumptions all suggest a reduction in transmission potential since the first reported case, but potential for sustained transmission in the near future. The estimated date of introduction in Brazil was consistent with epidemiological data from the first case of a returning-traveler from Lombardia, Italy. These findings highlight the unique reality of MGs epidemic and reinforce the need for real-time and continued genomic surveillance strategies as a way of understanding and therefore preparing against the epidemic spread of emerging viral pathogens
    corecore