2 research outputs found

    Charmed hadron signals of partonic medium

    Full text link
    We present a short review of our results on the collectivity and the suppression pattern of charmed mesons in heavy-ion collisions based on the microscopic Hadron-String Dynamics (HSD) transport approach for different scenarios of charm interactions with the surrounding matter - the 'comover' dissociation by mesons with further recreation by D+Dbar channels and 'pre-hadronic' interaction scenarios. While at SPS energies the hadronic 'comover' absorption scenario is found to be compatible with the experimental data, the dynamics of c and cbar quarks at RHIC are dominated by partonic or 'pre-hadronic' interactions in the strongly coupled quark-gluon plasma stage and cannot be modeled by pure hadronic interactions. We find that the collective flow of charm in the purely hadronic scenario appears compatible with the data at SPS energies but underestimates the data at top RHIC energies. Thus, the large elliptic flow v2 of D mesons and the low R_AA(pT) of J/Psi seen experimentally at RHIC have to be attributed to early interactions of non-hadronic degrees of freedom. Simultaneously, we observe that non-hadronic interactions are mandatory in order to describe the narrowing of the J/Psi rapidity distribution from p+p to central Au+Au collisions at the top RHIC energy. We demonstrate additionally that the strong quenching of high-pT J/Psi's in central Au+Au collisions indicates that a fraction of final J/Psi mesons is created by a coalescence mechanism close to the phase boundary.Comment: Talk given at International Conference on Strangeness in Quark Matter (SQM 2008), Beijing, China, 6-10 Oct 200

    Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

    Full text link
    Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed "head" region centered at Delta\phi ~ \pi, and an enhanced "shoulder" region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the "head" region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the "shoulder" region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the "shoulder" region contains the medium response to energetic jets.Comment: 420 authors from 58 institutions, 6 pages, 4 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore