25 research outputs found

    A morphological guide of neotropical freshwater sponge spicules for paleolimnological studies

    Get PDF
    Freshwater sponges (Porifera: Spongillida) are sessile invertebrates with skeletons composed of siliceous elements termed spicules. Sponge spicules (megascleres, microscleres, and gemmuloscleres) are characterized by widely varying sizes and shapes. These spicules are well-preserved in lacustrine, wetland, and riverine sediments and hold significant ecological and limnological information that can be applied as diagnostic tools in reconstructions of Quaternary environments. However, problems with taxonomy and the absence of systematic guidelines and standards of identification represent major challenges to utilizing freshwater sponges as a paleo-proxy. Here, we present a well-illustrated extraction protocol and morphological guide to the Neotropical freshwater sponge fauna. This guide is intended to introduce researchers and students to the study of freshwater sponges and their use as a diagnostic tool in paleoecology and paleolimnology

    Millenial-scale climatic and vegetation changes in a northern Cerrado (Northeast, Brazil) since the Last Glacial Maximum.

    Get PDF
    Abstract In the Southern Hemisphere, lacustrine sediments started to be deposited with the beginning of the deglaciation at ca 19,000 cal yr BP. At this time the region of Lake Cac -o was dominated by sparse and shrubby vegetation with dominance of steppic grasses in a poor sandy soil. The landscape did not present any ecological characteristics of a modern Cerrado. However single pollen grains of two Cerrado indicators, Byrsonima and Mimosa, suggest that some Cerrado species were able to survive under the prevailing arid climate, probably as small shrubs. After 15,500 cal yr BP, a sudden increase in the moisture rates is evidenced with the progressive expansion of rainforest showing successive dominance of various associations of taxa. The development of the forest stopped abruptly at the end of the Pleistocene between 12,800 and 11,000 cal yr BP, as attested by strong fires and the expansion of Poaceae. In the early Holocene an open landscape with a relatively high level of water in the lake preceded the progressive expansion of Cerrado species towards a denser forested landscape; fires are recorded from then on, resulting in the physiognomy of the Cerrado we know today. Late Pleistocene paleoenvironmental records from northern Brazil reflect the interplay between insolation forcing of two hemispheres with the local components represented by the interannual shift of the Inter Tropical Convergence Zone and the influence of seasonal equatorwards polar air incursions.

    Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces

    No full text
    The Amazon Macrotidal Mangrove Coast contains the most extensive and continuous mangrove belt globally, occupying an area of ~6500 km2 and accounting for 4.2% of global mangroves. The tallest and densest mangrove forests in the Amazon occur on the Bragança Peninsula. However, road construction that occurred in 1973 caused significant mangrove degradation in the area. A spatial-temporal analysis (1986–2019) based on optical, Synthetic Aperture Radar (SAR), drone images, and altimetric data obtained by photogrammetry and validated by a topographic survey were carried out to understand how the construction of a road led to the death of mangroves. The topographic data suggested that this road altered the hydrodynamical flow, damming tidal waters. This process killed at least 4.3 km2 of mangrove trees. Nevertheless, due to natural mangrove recolonization, the area exhibiting degraded mangrove health decreased to ~2.8 km2 in 2003 and ~0.73 km2 in 2019. Climatic extreme events such as “El Niño” and “La Niña” had ephemeral control over the mangrove degradation/regeneration. In contrast, the relative sea-level rise during the last several decades caused long-term mangrove recolonization, expanding mangrove areas from lower to higher tidal flats. Permanently flooded depressions in the study area, created by the altered hydrodynamical flow due to the road, are unlikely to be recolonized by mangroves unless connections are re-established between these depressions with drainage on the Caeté estuary through pipes or bridges to prevent water accumulation between the road and depressions. To minimize impacts on mangroves, this road should have initially been designed to cross mangrove areas on the highest tidal flats and to skirt the channel headwaters to avoid interruption of regular tidal flow

    Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces

    No full text
    The Amazon Macrotidal Mangrove Coast contains the most extensive and continuous mangrove belt globally, occupying an area of ~6500 km2 and accounting for 4.2% of global mangroves. The tallest and densest mangrove forests in the Amazon occur on the Bragança Peninsula. However, road construction that occurred in 1973 caused significant mangrove degradation in the area. A spatial-temporal analysis (1986–2019) based on optical, Synthetic Aperture Radar (SAR), drone images, and altimetric data obtained by photogrammetry and validated by a topographic survey were carried out to understand how the construction of a road led to the death of mangroves. The topographic data suggested that this road altered the hydrodynamical flow, damming tidal waters. This process killed at least 4.3 km2 of mangrove trees. Nevertheless, due to natural mangrove recolonization, the area exhibiting degraded mangrove health decreased to ~2.8 km2 in 2003 and ~0.73 km2 in 2019. Climatic extreme events such as “El Niño” and “La Niña” had ephemeral control over the mangrove degradation/regeneration. In contrast, the relative sea-level rise during the last several decades caused long-term mangrove recolonization, expanding mangrove areas from lower to higher tidal flats. Permanently flooded depressions in the study area, created by the altered hydrodynamical flow due to the road, are unlikely to be recolonized by mangroves unless connections are re-established between these depressions with drainage on the Caeté estuary through pipes or bridges to prevent water accumulation between the road and depressions. To minimize impacts on mangroves, this road should have initially been designed to cross mangrove areas on the highest tidal flats and to skirt the channel headwaters to avoid interruption of regular tidal flow

    Table_1_A morphological guide of neotropical freshwater sponge spicules for paleolimnological studies.DOCX

    No full text
    Freshwater sponges (Porifera: Spongillida) are sessile invertebrates with skeletons composed of siliceous elements termed spicules. Sponge spicules (megascleres, microscleres, and gemmuloscleres) are characterized by widely varying sizes and shapes. These spicules are well-preserved in lacustrine, wetland, and riverine sediments and hold significant ecological and limnological information that can be applied as diagnostic tools in reconstructions of Quaternary environments. However, problems with taxonomy and the absence of systematic guidelines and standards of identification represent major challenges to utilizing freshwater sponges as a paleo-proxy. Here, we present a well-illustrated extraction protocol and morphological guide to the Neotropical freshwater sponge fauna. This guide is intended to introduce researchers and students to the study of freshwater sponges and their use as a diagnostic tool in paleoecology and paleolimnology.</p

    The last mangroves of Marajo Island - Eastern Amazon: Impact of climate and/or relative sea-level changes

    No full text
    The dynamics, over the last 7500 years, of a mangrove at Marajo Island in northern Brazil were studied by pollen and sedimentary facies analyses using sediment cores. This island, located at the mouth of the Amazon River. is influenced by riverine inflow combined with tidal fluctuations of the equatorial Atlantic Ocean. Herbaceous vegetation intermingled with rainforest dominates the central area of the island, while varzea is the main vegetation type along the littoral. In particular, the modem northeastern coastal zone is covered by a mosaic of dense rainforest, herbaceous vegetation, mangroves, varzea, and restinga. The integration of pollen data and fades descriptions indicates a tidal mud flat colonized by mangroves in the interior of Marajo Island between similar to 7500 cal yr BP and similar to 3200 cal yr BP. During the late Holocene, mangroves retracted to a small area (100-700 m in width) along the northeastern coastal plain. Mangrove expansion during the early and mid Holocene was likely caused by the post-glacial sea-level rise which, combined with tectonic subsidence, led to a rise in tidal water salinity. Salinity must have further increased due to low river discharge resulting from increased aridity during the early and mid Holocene. The shrinking of the area covered by mangrove vegetation during the late Holocene was likely caused by the increase in river discharge during the late Holocene, which has maintained relatively low tidal water salinity in Marajo Island. Tidal water salinity is relatively higher in the northeastern part of the island than in others, due to the southeast-northwest trending current along the littoral. The mixing of marine and riverine freshwater inflows has provided a refuge for mangroves in this area. The increase in flow energy during the last century is related to landward sand migration, which explains the current retraction of mangroves. These changes may indicate an increased exposure to tidal influence driven by the relative sea-level rise, either associated with global fluctuations or tectonic subsidence, and/or by an increase in river water discharge. (C) 2012 Elsevier B.V. All rights reserved.Foundation for Research Support of Para (FAPESPA)Foundation for Research Support of Para (FAPESPA) [104/2008]Foundation for Research Support of Sao Paulo (FAPESP) [03615-5/2007]Foundation for Research Support of Sao Paulo (FAPESP
    corecore