21 research outputs found

    Novel Calibration systems for the dynamic and steady-state testing of digital instrument transformers

    Get PDF
    Within the frame of the European project 'Future Grid II-Metrology for the next-generation digital substation instrumentation', several partners developed traceable calibration systems which allow the calibration of conventional or non-conventional instrument transformers (IT) even with a sampled value (digital) output according to IEC 61869-9. Different setups are prepared to allow the calibration with complex test waveforms to emulate steady state, dynamic or temporary events during the assessment of the ITs. The laboratory calibration setups for either current transformers or voltage transformers are briefly described. Several results obtained for different kind of voltage or current transformers are presented

    The T.O.S.C.A. Project: Research, Education and Care

    Get PDF
    Despite recent and exponential improvements in diagnostic- therapeutic pathways, an existing “GAP” has been revealed between the “real world care” and the “optimal care” of patients with chronic heart failure (CHF). We present the T.O.S.CA. Project (Trattamento Ormonale dello Scompenso CArdiaco), an Italian multicenter initiative involving different health care professionals and services aiming to explore the CHF “metabolic pathophysiological model” and to improve the quality of care of HF patients through research and continuing medical education

    H-infinity robust displacement velocity control of a UAV based upon optical flow estimation

    Full text link
    [EN] The design of a displacement velocity controller is presented for a six rotor aerial vehicle. H–infinity control is proposed in order to achieve robust performance in presence of dynamic model uncertainty. It is assumed that a considerable amount of uncertainty is due to time delays introduced by the algorithms employed. The estimation of the vehicle’s displacement velocity is carried out on-board through an optical flow sensor implemented employing a camera and a high level processor a s w ell a s t he H–infinity controller. Through experimental data, the system’s identification procedure used to obtain a description of the plant as a family of models with global dynamic uncertainty is also presented as part of the design process. The implemented optical flow estimation methods are also presented as well as the tuning procedures employed which may affect the results of the system’s identification and the control performance. Experimental results are presented with details regarding the implementation phase.[ES] Se presenta el diseño del control para la velocidad de desplazamiento de un vehículo aéreo de seis rotores. La técnica de diseño utilizada es el control óptimo en H–infinito con el objetivo de conseguir rendimiento robusto ante la incertidumbre en el modelo de la dinámica de la velocidad de desplazamiento. Se considera que buena parte de la incertidumbre es atribuible a retardos de tiempo inciertos que introduce el propio algoritmo que se utiliza para estimar la velocidad de desplazamiento. El vehículo realiza a bordo la estimación de esta última a través de un sensor de flujo óptico implementado con una cámara y un procesador de alto nivel en el cual además se implementa la ley de control. Junto con el diseño del control, se muestra el procedimiento de identificación de sistemas utilizado para conseguir una descripción de la dinámica a través de una familia de plantas con incertidumbre dinámica global a través de la toma de datos experimentales. Finalmente se exhiben resultados experimentales con la implementación del sistema de control completo. Los autores agradecen la tarea de los revisores del trabajo. Sus observaciones y correcciones han contribuido a la introducción de significativas mejoras en el mismo. Este trabajo ha sido realizado parcialmente gracias al apoyo de la Universidad de Buenos Aires a través del proyecto UBA-PDE2019 y de la Universidad Tecnológica Nacional a través del proyecto CCUT-7731TC.Ghersin, A.; Giribet, J.; Luiso, J.; Tournour, A. (2021). Control robusto H-infinito para la velocidad de desplazamiento de un UAV en base a estimación de flujo óptico. Revista Iberoamericana de Automática e Informática industrial. 18(3):242-253. https://doi.org/10.4995/riai.2021.14370OJS242253183Armesto, L., Tornero, J., Vincze, M., 06 2007. Fast ego-motion estimation with multi-rate fusion of inertial and vision. I. J. Robotic Res. 26, 577-589. https://doi.org/10.1177/0278364907079283Azkarate, M., Gerdes, L., Joudrier, L., J. Pérez-del Pulgar, C., 2020. A GNC architecture for planetary rovers with autonomous navigation. En: International Conference on Robotics and Automation (ICRA). IEEE, pp. 1-6. https://doi.org/10.1109/ICRA40945.2020.9197122Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., Kanatas, A. G., 2019. A survey on machine-learning techniques for UAV-based communications. Sensors 19 (23). URL: https://www.mdpi.com/1424-8220/19/23/5170 https://doi.org/10.3390/s19235170Chao, H., Gu, Y., Napolitano, M., Jan 2014. A survey of optical flow techniques for robotics navigation applications. Journal of Intelligent & Robotic Systems 73 (1), 361-372. https://doi.org/10.1007/s10846-013-9923-6Choi, S. Y., Cha, D., 03 2019. Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art. Advanced Robotics, 1-13. https://doi.org/10.1080/01691864.2019.1586760España, M. D., 2019. Sistemas de Navegación Integrada con Aplicaciones, 2ndo Edición. CONAE. URL: https://www.argentina.gob.ar/sites/default/files/me_ nav_integ_libro_2019.pdfFonnegra, R., Goez, G., Tobón, A., 2019. Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina. Revista Iberoamericana de Automática e Informática 16(4), 415-422. https://doi.org/10.4995/riai.2019.11286Fossen, T., Pettersen, K., Nijmeijer, H., 2017. Sensing and Control for Autonomous Vehicles. Springer. https://doi.org/10.1007/978-3-319-55372-6Garberoglio, L., Pose, C., Mas, I., Giribet, J., 2019. Diseño de un autopiloto para pequeños vehículos no tripulados. Elektron 3 (1).https:// .org/10.37537/rev.elektron.3.1.71.2019Giribet, J., Mas, I., Moreno, P., 2018. Vision-based integrated navigation system and optimal allocation in formation flying. En: Proceedins of International Conference on Unmanned Aerial Aircrafts, Dallas, USA. pp. 52-61. https://doi.org/10.1109/ICUAS.2018.8453429Giribet, J. I., Luiso, J., 2020. Vuelo experimental - control de flujo óptico - LAR-GPSIC. URL: https://youtu.be/9YuDyu2lpvAGomes, L. L., Leal, L., Oliveira, T. R., Cunha, J. P. V. S., Revoredo, T. C., Aug 2016. Unmanned quadcopter control using a motion capture system. IEEE Latin America Transactions 14 (8), 3606-3613. https://doi.org/10.1109/TLA.2016.7786340Grabe, V., Bülth ff, H. H., Giordano, P. R., 2012. On-board velocity estimation and closed-loop control of a quadrotor UAV based on optical flow. En: 2012 IEEE International Conference on Robotics and Automation. pp. 491-497. https://doi.org/10.1109/ICRA.2012.6225328Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M., 2013. An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. En: 2013 IEEE International Conference on Robotics and Automation. pp. 1736-1741. https://doi.org/10.1109/ICRA.2013.6630805Horn, B. K. P., Schunck, B. G., 1981. Determining optical flow. Artificial Intelligence 17, 185-203. https://doi.org/10.1016/0004-3702(81)90024-2Jakubowski, A., Kubacki, A., Minorowicz, B., Nowak, A., 2015. Analysis thrust for different kind of propellers. En: Advances in Intelligent Systems and Computing. Springer International Publishing, pp. 85-90. https://doi.org/10.1007/978-3-319-15796-2_9Kanellakis, C., Nikolakopoulos, G., Jul 2017. Survey on computer vision for UAVs: Current developments and trends. Journal of Intelligent & Robotic Systems 87 (1), 141-168. https://doi.org/10.1007/s10846-017-0483-zLi, J., Li, Y., 2011. Dynamic analysis and pid control for a quadrotor. En: 2011 IEEE International Conference on Mechatronics and Automation. pp. 573- 578. https://doi.org/10.1109/ICMA.2011.5985724Lim, H., Lee, H., Kim, H. J., 2012. Onboard flight control of a micro quadrotor using single strapdown optical flow sensor. En: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 495-500. https://doi.org/10.1109/IROS.2012.6386045Ljung, L., 1999. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR.Luiso, J. E., Giribet, J. I., 2017. Sensor de flujo óptico. En: Actas de la Reunión de Procesamiento de la Información y Control. pp. 1-6.Ma, Z., Li, H., Gu, Y., Li, Z., Li, Q., 2019. Flight and hover control system design for a mini-quadrotor based on multi-sensors. International Journal of Control, Automation and Systems 17, 486-499. https://doi.org/10.1007/s12555-017-0308-7Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17 (3), 254-263. https://doi.org/10.4995/riai.2020.11806Noormohammadi Asl, A., Esrafilian, O., Arzati, M. A., Taghirad, H. D., 2020. System identification and H∞-based control of quadrotor attitude. Mechanical Systems and Signal Processing 135. https://doi.org/10.1016/j.ymssp.2019.106358Sánchez Peña, R. S., Sznaier, M., 1998. Robust Systems Theory and Applications. John Wiley & Sons, Inc.Szafranski, G., Czyba, R., BŁachuta, M., 2014. Modeling and identification of electric propulsion system for multirotor unmanned aerial vehicle design. En: 2014 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 470-476. https://doi.org/10.1109/ICUAS.2014.6842287Tai, X.-C., Lie, K.-A., Chan, T. F., Osher, S. (Eds.), 2007. Image Processing Based on Partial Differential Equations. Springer-Verlag Berlin Heidelberg, proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, August 8-12, 2005. https://doi.org/10.1007/978-3-540-33267-1Tournour, A., 2018. Control de un vehículo aéreo no tripulado utilizando información de flujo óptico. Tesis de Ingeniería Electrónica. Facultad de Ingeniería, Universidad de Buenos Aires. URL: http://bibliotecadigital.fi.uba.ar/items/show/18231Zhang, X., Xian, B., Zhao, B., Zhang, Y., 2015. Autonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board vision. IEEE Transaction on Industrial Electronics 62, 10. https://doi.org/10.1109/TIE.2015.2420036Zul Azfar, A., Hazry, D., 2011. A simple approach on implementing imu sensor fusion in pid controller for stabilizing quadrotor flight control. En: IEEE 7th Int. Colloquium on Signal Processing and its Applications. pp. 28-32. https://doi.org/10.1109/CSPA.2011.575983

    Compensation of Current Transformers' Non-Linearities by Means of Frequency Coupling Matrices

    No full text
    Current transformers (CTs) are the most commonly installed current transducers in power systems, at all voltage levels. Therefore, the measurement of harmonics, and power quality in general, which is an essential task in the new context of Smart Grids, are strongly influenced by the performance of CTs. It is well known that CTs can exhibit a nonlinear response and, therefore, in order to accurately measure harmonics with CTs, suitable non-linear mathematical models have to be used. In this paper the complex ratio of the CT is modelled using a frequency domain model based on frequency coupling matrices. An accurate measurement setup has been built to characterize the CTs performance in distorted conditions. Some preliminary results of the proposed compensation technique are presented and discussed for a commercial CT of accuracy Class 0.5

    Assessment of the high frequency emissions of low-voltage electronic equipment under different supply conditions

    No full text
    Assessing the emissions of low-voltage electronic equipment in the high frequency (HF) range (2-150 kHz) is an important ongoing research topic required to better understand the long term implications of HF distortion. Such studies can be conducted by supplying the load directly from the Mains network, from a programmable Power Source or via a defined impedance stabilization network. However, a standardized measurement procedure and source specification is still missing in literature. This paper presents a comparative study of background voltage distortion and emitted currents of two different electronic loads using the three different measurement set-ups deemed suitable for assessing the HF emissions of electronic equipment. The results highlight the difficulties in systematic testing of HF distortion and show that the supply configuration has considerable impact on the obtained results

    Monitoring a DC Train Supplied by a Reversible Substation

    No full text
    European energy policy has been supporting a gradual shift towards an efficient energy management in order to reduce the railway transport emissions by 50 % within 2030. One of the most promising solutions to reduce emissions is the recovery of braking energy: it is possible to convert kinetic energy back to the electrical form and reinject it back to the grid. Currently, because of the unidirectional nature of the substation, the receptivity of the supply network is limited and only a small part of the traction energy is sent back to the catenary. The remaining part is usually wasted on the train braking rheostats. In this scenario, new installations of reversible substations in DC railway systems, can improve energy savings. In this paper, in order to evaluate the impact of this innovative technology, a preliminary analysis of the data acquired during a measurement campaign conducted jointly with Metro de Madrid (train and substation owner) and HitachiRail (train manufacturer) is presented. Energy exchanged between train and supply line and real-time power quality events survey can be valuable tools to make an estimation of the impact of the reversible substation. © 2020 IEEE
    corecore