58 research outputs found

    The Impact of HII Regions on the Interstellar Medium of our Galaxy

    Get PDF
    The interstellar medium (ISM) of our Galaxy contains low-density diffuse ionized gas known as the warm ionized medium (WIM). O- and B-type stars emit large amounts of ionizing radiation and it is believed that a fraction of this radiation escapes from their fully ionized HII regions and into the ISM where it is responsible for maintaining the ionization of the WIM. Here we aim to better understand how the radiation produced by OB stars is able to leak from the HII regions, how the radiation field changes during this process, and how the radiation affects the ambient ISM. Using Green Bank Telescope radio recombination line data of a subset of Galactic HII regions, we show that the morphology of the photodissociation region surrounding an HII region strongly affects the amount of leaking radiation. We compute a leaking photon fraction of 15±5% for the compact HII region NGC7538 and argue that more luminous HII regions likely have a greater effect on maintaining the ionization of the WIM. The N(4He+)/N(H+) abundance ratio decreases with distance from most observed regions, indicating that helium-ionizing photons are being absorbed within the HII region ionization fronts. We find that WIM emission toward the first Galactic quadrant is correlated both with the locations of luminous HII region complexes and with the intensity of diffuse 8μm emission caused by excitation of polycyclic aromatic hydrocarbons (PAHs). This suggests that the soft-ultraviolet photons required to excite PAHs have the same origin as the more energetic radiation maintaining the WIM

    Diffuse Ionized Gas in the Milky Way Disk

    Full text link
    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from l=18deg to 40deg using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from HII region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100km/s associated with the luminous HII region W43, and the other centered around 45km/s not associated with any large HII region. Our analysis suggests that the two velocity components near W43 may be caused by non-circular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ~6kpc for the 100km/s component and ~12kpc for the 45km/s component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0um emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete HII regions and the intensity of the RRL emission from the DIG. This implies that the soft ultra-violet photons responsible for creating the infrared emission have a similar origin as the harder ultra-violet photons required for the RRL emission. The 8.0um emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.Comment: Accepted for publication in ApJ (16 pages, 11 figures, 2 tables

    HII Region Ionization of the Interstellar Medium: A Case Study of NGC 7538

    Get PDF
    Using data from the Green Bank Telescope, we analyze the radio continuum (free-free) and radio recombination line (RRL) emission of the compact HII region NGC 7538 (Sharpless 158). We detect extended radio continuum and hydrogen RRL emission beyond the photodissociation region (PDR) toward the north and east, but a sharp decrease in emission toward the south and west. This indicates that a non-uniform PDR morphology is affecting the amount of radiation "leaking" through the PDR. The strongest carbon RRL emission is found in the western PDR that appears to be dense. We compute a leaking fraction fR=15±5f_R = 15 \pm 5 % of the radio continuum emission measured in the plane of the sky which represents a lower limit when accounting for the three-dimensional geometry of the region. We detect an average 4He+/H+^4\textrm{He}^+/\textrm{H}^+ abundance ratio by number of 0.088±0.0030.088 \pm 0.003 inside the HII region and a decrease in this ratio with increasing distance from the region beyond the PDR. Using Herschel Space Observatory data, we show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission, but that the dust temperature enhancements are mostly contained within a second PDR to the east. Unlike the giant HII region W43, the radiation leaking from NGC 7538 seems to only affect the local ambient medium. This suggests that giant HII regions may have a large effect in maintaining the ionization of the interstellar medium.Comment: Accepted for publication in ApJ (15 pages, 10 figures, 2 tables

    Diffuse Ionized Gas in the Milky Way Disk

    Get PDF
    We analyze the diffuse ionized gas (DIG) in the first Galactic quadrant from l=18deg to 40deg using radio recombination line (RRL) data from the Green Bank Telescope. These data allow us to distinguish DIG emission from HII region emission and thus study the diffuse gas essentially unaffected by confusion from discrete sources. We find that the DIG has two dominant velocity components, one centered around 100km/s associated with the luminous HII region W43, and the other centered around 45km/s not associated with any large HII region. Our analysis suggests that the two velocity components near W43 may be caused by non-circular streaming motions originating near the end of the Galactic bar. At lower Galactic longitudes, the two velocities may instead arise from gas at two distinct distances from the Sun, with the most likely distances being ~6kpc for the 100km/s component and ~12kpc for the 45km/s component. We show that the intensity of diffuse Spitzer GLIMPSE 8.0um emission caused by excitation of polyaromatic hydrocarbons (PAHs) is correlated with both the locations of discrete HII regions and the intensity of the RRL emission from the DIG. This implies that the soft ultra-violet photons responsible for creating the infrared emission have a similar origin as the harder ultra-violet photons required for the RRL emission. The 8.0um emission increases with RRL intensity but flattens out for directions with the most intense RRL emission, suggesting that PAHs are partially destroyed by the energetic radiation field at these locations.Comment: Accepted for publication in ApJ (16 pages, 11 figures, 2 tables

    Hydrogen Radio Recombination Line Emission from M51 and NGC628

    Full text link
    We report the discovery of hydrogen radio recombination line (RRL) emission from two galaxies with star formation rates (SFRs) similar to that of the Milky Way: M51 and NGC628. We use the Green Bank Telescope (GBT) to measure ∼\sim15 Hnα\alpha recombination transitions simultaneously and average these data to improve our spectral signal-to-noise ratio. We show that our data can be used to estimate the total ionizing photon flux of these two sources, and we derive their SFRs within the GBT beam: ΨOB=3.46\Psi_{\rm OB} = 3.46 M⊙_{\odot} yr−1^{-1} for M51 and ΨOB=0.56\Psi_{\rm OB} = 0.56 M⊙_{\odot} yr−1^{-1} for NGC628. Here, we demonstrate that it is possible to detect RRLs from normal galaxies that are not undergoing a starburst with current instrumentation and reasonable integration times (∼\sim12 hr for each source). We also show that we can characterize the overall star-forming properties of M51 and NGC628, although the GBT beam cannot resolve individual HII region complexes. Our results suggest that future instruments, such as the Square Kilometre Array and the Next Generation Very Large Array, will be able to detect RRL emission from a multitude of Milky Way-like galaxies, making it possible to determine SFRs of normal galaxies unaffected by extinction and to measure global star formation properties in the local universe.Comment: 8 pages, 1 figure, 3 tables; Accepted for publication in PAS

    A Green Bank Telescope Survey of Large Galactic HII Regions

    Full text link
    As part of our ongoing HII Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly-large Galactic HII regions in radio recombination line (RRL) emission. Our targets are located at a declination greater than -45deg., which corresponds to 266deg. > l > -20deg. at b = 0deg. All sources were selected from the WISE Catalog of Galactic HII Regions, and have infrared angular diameters >260''. The Galactic distribution of these "large" HII regions is similar to that of the previously-known sample of Galactic HII regions. The large HII region RRL line width and peak line intensity distributions are skewed toward lower values compared with that of previous HRDS surveys. We discover 7 sources with extremely narrow RRLs <10 km/s. If half the line width is due to turbulence, these 7 sources have thermal plasma temperatures <1100 K. These temperatures are lower than any measured for Galactic HII regions, and the narrow line components may arise instead from partially ionized zones in the HII region photo-dissociation regions. We discover G039.515+00.511, one of the most luminous HII regions in the Galaxy. We also detect the RRL emission from three HII regions with diameters >100 pc, making them some of the physically largest known HII regions in the Galaxy. This survey completes the HRDS HII region census in the Northern sky, where we have discovered 887 HII regions and more than doubled the previously-known census of Galactic HII regions.Comment: Accepted in ApJ

    H II Region Ionization Of The Interstellar Medium: A Case Study Of Ngc 7538

    Get PDF
    Using data from the Green Bank Telescope, we analyze the radio continuum (free-free) and radio recombination line (RRL) emission of the compact HII region NGC 7538 (Sharpless 158). We detect extended radio continuum and hydrogen RRL emission beyond the photodissociation region (PDR) toward the north and east, but a sharp decrease in emission toward the south and west. This indicates that a non-uniform PDR morphology is affecting the amount of radiation leaking through the PDR. The strongest carbon RRL emission is found in the western PDR that appears to be dense. We compute a leaking fraction fR=15±5f_R = 15 \pm 5 % of the radio continuum emission measured in the plane of the sky which represents a lower limit when accounting for the three-dimensional geometry of the region. We detect an average 4He+/H+^4\textrm{He}^+/\textrm{H}^+ abundance ratio by number of 0.088±0.0030.088 \pm 0.003 inside the HII region and a decrease in this ratio with increasing distance from the region beyond the PDR. Using Herschel Space Observatory data, we show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission, but that the dust temperature enhancements are mostly contained within a second PDR to the east. Unlike the giant HII region W43, the radiation leaking from NGC 7538 seems to only affect the local ambient medium. This suggests that giant HII regions may have a large effect in maintaining the ionization of the interstellar medium

    Long-term low-dose dehydroepiandrosterone replacement therapy in aging males with partial androgen deficiency.

    Get PDF
    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) age-related withdrawal is very likely to be involved in the aging process and the onset of age-related diseases, giving rise to the question of whether preventing or compensating the decline of these steroids may have endocrine and clinical benefits. The aim of the present trial was to evaluate the endocrine, neuroendocrine and clinical consequences of a long-term (1 year), low-dose (25 mg/day) replacement therapy in a group of aging men who presented the clinical characteristics of partial androgen deficiency (PADAM). Circulating DHEA, DHEAS, androstenedione, total testosterone and free testosterone, dihydrotestosterone (DHT), progesterone, 17-hydroxyprogesterone, allopregnanolone, estrone, estradiol, sex hormone binding globulin (SHBG), cortisol, follicle stimulating hormone (FSH), luteinizing hormone (LH), growth hormone (GH) and insulin-like growth factor 1 (IGF-1) levels were evaluated monthly to assess the endocrine effects of the therapy, while beta-endorphin values were used as a marker of the neuroendocrine effects. A Kupperman questionnaire was performed to evaluate the subjective symptoms before and after treatment. The results showed a great modification of the endocrine profile; with the exception of cortisol levels, which remained unchanged, DHEA, DHEAS, androstenedione, total and free testosterone, DHT, progesterone, 17-hydroxyprogesterone, estrone, estradiol, GH, IGF-1 and beta-endorphin levels increased significantly with respect to baseline values, while FSH, LH and SHBG levels showed a significant decrease. The Kupperman score indicated a progressive improvement in mood, fatigue and joint pain. In conclusion, the present study demonstrates that 25 mg/day of DHEA is able to cause significant changes in the hormonal profile and clinical symptoms and can counteract the age-related decline of endocrine and neuroendocrine functions. Restoring DHEA levels to young adult values seems to benefit the age-related decline in physiological functions but, however promising, placebo-controlled trials are required to confirm these preliminary results
    • …
    corecore