13 research outputs found

    Apoptotic and chemotherapeutic properties of iron(III)-salophene in an ovarian cancer animal model

    Get PDF
    The cytotoxicity of organometallic compounds iron(III)-, cobalt(III)-, manganese(II)-, and copper(II)-salophene (-SP) on platinum-resistant ovarian cancer cell lines was compared. Fe-SP displayed selective cytotoxicity (IC 50 at ∼1 μM) against SKOV-3 and OVCAR-3 cell lines while Co-SP caused cytotoxic effects only at higher concentrations (IC50 at 60 ?M) and Cu-SP effects were negligible. High cytotoxicity of Mn-SP (30-60 μM) appeared to be nonspecific because the Mn-chloride salt reduced cell viability similarly. The effect of Fe-SP at 1 μM proved to be ovarian cancer cell selective when compared to a panel of cell lines derived from different tumors. The first irreversible step in the induction of cell death by Fe-SP occurred after 3 hrs as indicated by the mitochondrial transmembrane potential (ΔΨm) and was mainly linked to apoptotic, not necrotic events. To evaluate the toxicity of Fe-SP in vivo we conducted an acute toxicity study in rats. The LD 50 of Fe-SP is >2000 mg/kg orally and >5.5 mg/kg body weight by intraperitoneal injection. An ovarian cancer animal model showed that the chemotherapeutic relevant dose of Fe-SP in rats is 0.5-1 mg/kg body weight. The present report suggests that Fe-SP is a potential therapeutic drug to treat ovarian cancer. © 2009 Lange et al, publisher and licensee Dove Medical Press Ltd

    Population and genomic lessons from genetic analysis of two Indian populations

    No full text
    Indian demographic history includes special features such as founder effects, interpopulation segregation, complex social structure with a caste system and elevated frequency of consanguineous marriages. It also presents a higher frequency for some rare mendelian disorders and in the last two decades increased prevalence of some complex disorders. Despite the fact that India represents about one-sixth of the human population, deep genetic studies from this terrain have been scarce. In this study, we analyzed high-density genotyping and whole-exome sequencing data of a North and a South Indian population. Indian populations show higher differentiation levels than those reported between populations of other continents. In this work, we have analyzed its consequences, by specifically assessing the transferability of genetic markers from or to Indian populations. We show that there is limited genetic marker portability from available genetic resources such as HapMap or the 1,000 Genomes Project to Indian populations, which also present an excess of private rare variants. Conversely, tagSNPs show a high level of portability between the two Indian populations, in contrast to the common belief that North and South Indian populations are genetically very different. By estimating kinship from mates and consanguinity in our data from trios, we also describe different patterns of assortative mating and inbreeding in the two populations, in agreement with distinct mating preferences and social structures. In addition, this analysis has allowed us to describe genomic regions under recent adaptive selection, indicating differential adaptive histories for North and South Indian populations. Our findings highlight the importance of considering demography for design and analysis of genetic studies, as well as the need for extending human genetic variation catalogs to new populations and particularly to those with particular demographic histories.International fellowship funded by Center for Neurogenomics and Cognitive Research (CNCR), VU, Amsterdam, The Netherlands to GJ; Research grant from J C Bose fellowship to BKT; grant # BT/01/COE/07/UDSC to BKT and salary support to GJ are gratefully acknowledged. FC was supported by a Beatriu de Pinós (2010-BP- B-00128) fellowship and MM by a PhD grant both from AGAUR (Generalitat de Catalunya). Funding to FC by grant SAF2012-35025 from the Ministerio de Economía y Competitividad (Spain); Funding to JB by grants BFU2010-19443 from the Ministerio de Ciencia y Tecnología (Spain), PRI-PIBIN-2011-0942 from the Ministerio de Economía y Competitividad (Spain), and from the Direcció General de Recerca, Generalitat de Catalunya (Grup de Recerca Consolidat 2009 SGR 1101).Peer Reviewe

    An Introduction to Synthetic Biology

    No full text
    Synthetic biology is a newly emerged discipline that came into light several years ago. It is an interdisciplinary field bringing together the expertise from science, engineering, and computing to create artificial parts or systems in the biological world. This chapter provides a concise overview of the background and developments in synthetic biology with focus on some of the latest research findings. It is believed that synthetic biology can open new doors for solutions to many existing daily life problems. However, there are still many challenges to be overcome due to the complex nature of biological systems. The discoveries and knowledge that will be gained from the ongoing studies in synthetic biology will enrich our understanding towards how life has been designed by nature and to what extent it can be altered or improved by artificial interference

    Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans

    Get PDF
    VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.This work was supported by the Spanish National Institute for Bioinformatics (www.inab.org). PL is supported by a PhD fellowship from ‘‘Acción Estratégica de Salud, en el Marco del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2008–2011’
    corecore