33 research outputs found

    Multifaceted role of BTLA in the control of CD8+ T cell fate after antigen encounter

    Get PDF
    Purpose: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%–50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8+ TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described. Here, we sought to determine the functional characteristics of the CD8+BTLA+TIL subset and define the contribution of the Grb2 motif of BTLA in T-cell costimulation. Experimental Design: We determined the functional role and downstream signal of BTLA in both human CD8+ TILs and mouse CD8+ T cells. Functional assays were used including single-cell analysis, reverse-phase protein array (RPPA), antigen-specific vaccination models with adoptively transferred TCR-transgenic T cells as well as patient-derived xenograft (PDX) model using immunodeficient NOD-scid IL2Rgammanull (NSG) tumor-bearing mice treated with autologous TILs. Results: CD8+BTLA? TILs could not control tumor growth in vivo as well as their BTLA+ counterpart and antigen-specific CD8+BTLA? T cells had impaired recall response to a vaccine. However, CD8+BTLA+ TILs displayed improved survival following the killing of a tumor target and heightened “serial killing” capacity. Using mutants of BTLA signaling motifs, we uncovered a costimulatory function mediated by Grb2 through enhancing the secretion of IL-2 and the activation of Src after TCR stimulation. Conclusions: Our data portrays BTLA as a molecule with the singular ability to provide both costimulatory and coinhibitory signals to activated CD8+ T cells, resulting in extended survival, improved tumor control, and the development of a functional recall response. Clin Cancer Res; 23(20); 6151–64. ©2017 AACR

    Improved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profiling

    Get PDF
    BACKGROUND: Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the patient level. In this study we investigated new machine learning-based models of survival using transcriptomic and clinical data. METHODS: Gene expression profiling (GEP) of in 2 different publicly available retrospective DLBCL cohorts were analyzed. Cox regression and unsupervised clustering were performed in order to identify probes associated with overall survival on the largest cohort. Random forests were created to model survival using combinations of GEP data, COO classification and clinical information. Cross-validation was used to compare model results in the training set, and Harrel's concordance index (c-index) was used to assess model's predictability. Results were validated in an independent test set. RESULTS: Two hundred thirty-three and sixty-four patients were included in the training and test set, respectively. Initially we derived and validated a 4-gene expression clusterization that was independently associated with lower survival in 20% of patients. This pattern included the following genes: TNFRSF9, BIRC3, BCL2L1 and G3BP2. Thereafter, we applied machine-learning models to predict survival. A set of 102 genes was highly predictive of disease outcome, outperforming available clinical information and COO classification. The final best model integrated clinical information, COO classification, 4-gene-based clusterization and the expression levels of 50 individual genes (training set c-index, 0.8404, test set c-index, 0.7942). CONCLUSION: Our results indicate that DLBCL survival models based on the application of machine learning algorithms to gene expression and clinical data can largely outperform other important prognostic variables such as disease stage and COO. Head-to-head comparisons with other risk stratification models are needed to compare its usefulness

    A phase II trial of recombinant MAGE-A3 protein with immunostimulant AS15 in combination with high-dose Interleukin-2 (HDIL2) induction therapy in metastatic melanoma

    No full text
    Abstract Background HDIL-2 is approved for advanced melanoma based on its durable antitumor activity. MAGE-A3 cancer immunotherapeutic (MAGE-A3 CI) is a recombinant MAGE-A3 protein combined with an immunostimulant adjuvant system and has shown antitumor activity in melanoma. We assessed the safety and anti-tumor activity of HDIL-2 combined with MAGE-A3 CI in advanced melanoma. Methods Patients with unresectable Stage III or Stage IV MAGE-A3-positive melanoma were enrolled in this phase II study. Treatment included an induction phase of MAGE-A3 CI plus HDIL-2 for 8 cycles followed by a maintenance phase of MAGE-A3 CI monotherapy. The primary endpoints were safety and objective response assessed per RECIST v1.1. Immune biomarker and correlative studies on tumor and peripheral blood were performed. Results Eighteen patients were enrolled. Seventeen patients were evaluable for safety and sixteen for response. Responses occurred in 4/16 (25%) patients with 3 complete responses, and stable disease in 6/16 (38%) patients with a disease control rate of 63%. The median duration of response was not reached at median follow-up of 36.8 months. Induction therapy of HDIL-2 + MAGE-A3 CI had similar toxicities to those reported with HDIL-2 alone. Maintenance MAGE-A3 monotherapy was well-tolerated. Increased immune checkpoint receptor expression by circulating T regulatory cells was associated with poor clinical outcomes; and responders tended to have increased tumor infiltrating T cells in the baseline tumor samples. Conclusions The safety profile of HDIL-2 + MAGE-A3 CI was similar to HDIL-2 monotherapy. Maintenance MAGE-A3 CI provides robust anti-tumor activity in patients who achieved disease control with induction therapy. Immune monitoring data suggest that MAGE-A3 CI plus checkpoint inhibitors could be a promising treatment for MAGE-A3-positive melanoma. Trial registration ClinicalTrials.gov, NCT01266603. Registered 12/24/2010, https://clinicaltrials.gov/ct2/show/NCT0126660
    corecore