10,314 research outputs found

    The Classification of Highly Supersymmetric Supergravity Solutions

    Full text link
    The spinorial geometry method is an effective method for constructing systematic classifications of supersymmetric supergravity solutions. Recent work on analysing highly supersymmetric solutions in type IIB supergravity using this method is reviewed [arXiv:hep-th/0606049, arXiv:0710.1829]. It is shown that all supersymmetric solutions of IIB supergravity with more than 28 Killing spinors are locally maximally supersymmetric.Comment: 23 pages, latex. To appear in the proceedings of the Special Metrics and Supersymmetry conference at Universidad del Pais Vasco, May 2008. References correcte

    Domain-adaptive deep network compression

    Full text link
    Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer. We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing. We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone -- with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.Comment: Accepted at ICCV 201

    Hospital volume and outcomes for acute pulmonary embolism: Multinational population based cohort study

    Get PDF
    [Objectives] To evaluate the association between experience in the management of acute pulmonary embolism, reflected by hospital case volume, and mortality.[Design] Multinational population based cohort study using data from the Registro Informatizado de la Enfermedad TromboEmbólica (RIETE) registry between 1 January 2001 and 31 August 2018.[Setting] 353 hospitals in 16 countries.[Participants] 39 257 consecutive patients with confirmed diagnosis of acute symptomatic pulmonary embolism.[Main] outcome measure Pulmonary embolism related mortality within 30 days after diagnosis of the condition.[Results] Patients with acute symptomatic pulmonary embolism admitted to high volume hospitals (>40 pulmonary embolisms per year) had a higher burden of comorbidities. A significant inverse association was seen between annual hospital volume and pulmonary embolism related mortality. Admission to hospitals in the highest quarter (that is, >40 pulmonary embolisms per year) was associated with a 44% reduction in the adjusted odds of pulmonary embolism related mortality at 30 days compared with admission to hospitals in the lowest quarter (<15 pulmonary embolisms per year; adjusted risk 1.3% v 2.3%; adjusted odds ratio 0.56 (95% confidence interval 0.33 to 0.95); P=0.03). Results were consistent in all sensitivity analyses. All cause mortality at 30 days was not significantly reduced between the two quarters (adjusted odds ratio 0.78 (0.50 to 1.22); P=0.28). Survivors showed little change in the odds of recurrent venous thromboembolism (odds ratio 0.76 (0.49 to 1.19)) or major bleeding (1.07 (0.77 to 1.47)) between the low and high volume hospitals.[Conclusions] In patients with acute symptomatic pulmonary embolism, admission to high volume hospitals was associated with significant reductions in adjusted pulmonary embolism related mortality at 30 days. These findings could have implications for management strategies.Peer reviewe

    Porous medium equation with nonlocal pressure

    Full text link
    We provide a rather complete description of the results obtained so far on the nonlinear diffusion equation ut=(um1(Δ)su)u_t=\nabla\cdot (u^{m-1}\nabla (-\Delta)^{-s}u), which describes a flow through a porous medium driven by a nonlocal pressure. We consider constant parameters m>1m>1 and 0<s<10<s<1, we assume that the solutions are non-negative, and the problem is posed in the whole space. We present a theory of existence of solutions, results on uniqueness, and relation to other models. As new results of this paper, we prove the existence of self-similar solutions in the range when N=1N=1 and m>2m>2, and the asymptotic behavior of solutions when N=1N=1. The cases m=1m = 1 and m=2m = 2 were rather well known.Comment: 24 pages, 2 figure

    Ac magnetic susceptibility of a molecular magnet submonolayer directly patterned onto a microSQUID sensor

    Get PDF
    We report the controlled integration, via Dip Pen Nanolithography, of monolayer dots of ferritin-based CoO nanoparticles (12 Bohr magnetons) into the most sensitive areas of a microSQUID sensor. The nearly optimum flux coupling between these nanomagnets and the microSQUID improves the achievable sensitivity by a factor 100, enabling us to measure the linear susceptibility of the molecular array down to very low temperatures (13 mK). This method opens the possibility of applying ac susceptibility experiments to characterize two-dimensional arrays of single molecule magnets within a wide range of temperatures and frequencies.Comment: 4 pages 3 figure

    Matrix Assisted Formation of Ferrihydrite Nanoparticles in a Siloxane/Poly(Oxyethylene) Nanohybrid

    Full text link
    Matrix-assisted formation of ferrihydrite, an iron oxide hydroxide analogue of the protein ferritin-core, in a sol-gel derived organic-inorganic hybrid is reported. The hybrid network (named di-ureasil) is composed of poly(oxyethylene) chains of different average polymer molecular weights grafted to siloxane domains by means of urea cross-linkages and accommodates ferrihydrite nanoparticles. Magnetic measurements, Fourier transform infrared and nuclear magnetic resonance spectroscopy reveal that the controlled modification of the polymer molecular weight allows the fine-tuning of the ability of the hybrid matrix to assist and promote iron coordination at the organic-inorganic interface and subsequent nucleation and growth of the ferrihydrite nanoparticles whose core size (2-4 nm) is tuned by the amount of iron incorporated. The polymer chain length, its arrangement and crystallinity, are key factors on the anchoring and formation of the ferrihydrite particles.Comment: 7 pages, 6 figures. To be published in J. Mater. Che

    Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    Full text link
    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x 105Msolar,andagesof5to25millionyears.Theoverallstructureofthenuclearspiralsaswellasthesize,numberandmassesofthestarformingknotsareexplainedinthecontextofamassivegaseousnucleardisksubjecttoselfgravitationalinstabilitiesandtothegravitationalfieldcreatedbythenuclearbar.Accordingtothemodel,thegaseousdiskhasamassofabout5x107Msolarinsidearadiusof400pc,thebarhasaradiusof150pcandapatternspeedofabout0.5Myr1,andtheaveragemassaccretionrateintothecore(R<8pc)isabout0.01Msolar10^5 M_{solar}, and ages of 5 to 25 million years. The overall structure of the nuclear spirals as well as the size, number and masses of the star-forming knots are explained in the context of a massive gaseous nuclear disk subject to self-gravitational instabilities and to the gravitational field created by the nuclear bar. According to the model, the gaseous disk has a mass of about 5 x 10^7 M_{solar} inside a radius of 400 pc, the bar has a radius of 150 pc and a pattern speed of about 0.5 Myr^{-1}, and the average mass accretion rate into the core (R < 8 pc) is about 0.01 M_{solar} yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000

    Quantum phases of a qutrit

    Full text link
    We consider various approaches to treat the phases of a qutrit. Although it is possible to represent qutrits in a convenient geometrical manner by resorting to a generalization of the Poincare sphere, we argue that the appropriate way of dealing with this problem is through phase operators associated with the algebra su(3). The rather unusual properties of these phases are caused by the small dimension of the system and are explored in detail. We also examine the positive operator-valued measures that can describe the qutrit phase properties.Comment: 6 page

    Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials

    Full text link
    The Klein-Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, Vv+Vs=constantV_{v}+V_{s}= \mathrm{constant}. These intrinsically relativistic and isospectral problems are solved in a case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.Comment: 3 figure
    corecore