10,914 research outputs found

    Classification of Triadic Chord Inversions Using Kohonen Self-organizing Maps

    Get PDF
    In this paper we discuss the application of the Kohonen Selforganizing Maps to the classification of triadic chords in inversions and root positions. Our motivation started in the validation of Schönberg´s hypotheses of the harmonic features of each chord inversion. We employed the Kohonen network, which has been generally known as an optimum pattern classification tool in several areas, including music, to verify that hypothesis. The outcomes of our experiment refuse the Schönberg´s assumption in two aspects: structural and perceptual/functional

    An extended solution space for Chern-Simons gravity: the slowly rotating Kerr black hole

    Full text link
    In the Einstein-Cartan formulation, an iterative procedure to find solutions in non-dynamical Chern-Simons (CS) gravity in vacuum is proposed. The iterations, in powers of a small parameter β\beta which codifies the CS coupling, start from an arbitrary torsionless solution of Einstein equations. With Schwarzschild as the zeroth-order choice, we derive a second-order differential equation for the O(β)\mathcal{O}(\beta) corrections to the metric, for an arbitrary zeroth-order embedding parameter. In particular, the slowly rotating Kerr metric is an O(β)\mathcal{O}(\beta) solution in either the canonical or the axial embeddings.Comment: 5 pages, PRD accepte

    Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects

    Full text link
    Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the "black hole hypothesis," once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.Comment: 10 pages, RevTeX

    Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet

    Get PDF
    We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.Comment: Accepted in Phys. Rev. Let

    Pre- and Post-burst Radio Observations of the Class 0 Protostar HOPS 383 in Orion

    Get PDF
    There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a ×35\times 35 mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of 200\sim 200 to 300 μ\muJy in the X band (9\sim 9 GHz), with a typical uncertainty of 10 to 20 μ\muJy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements do not follow each other in time, at least not within timescales shorter than a few years. Time monitoring of more objects and specific predictions from simulations are needed to clarify the details of the connection betwen accretion and jets/winds in YSOs.Comment: ApJ Letters, in pres

    Ultralight boson cloud depletion in binary systems

    Full text link
    Ultralight scalars can extract rotational energy from astrophysical black holes through superradiant instabilities, forming macroscopic boson clouds. This process is most efficient when the Compton wavelength of the boson is comparable to the size of the black hole horizon, i.e. when the "gravitational fine structure constant" αGμM/c1\alpha\equiv G \mu M/\hbar c\sim 1. If the black hole/cloud system is in a binary, tidal perturbations from the companion can produce resonant transitions between the energy levels of the cloud, depleting it by an amount that depends on the nature of the transition and on the parameters of the binary. Previous cloud depletion estimates considered binaries in circular orbit and made the approximation α1\alpha\ll 1. Here we use black hole perturbation theory to compute instability rates and decay widths for generic values of α\alpha, and we show that this leads to much larger cloud depletion estimates when α0.1\alpha \gtrsim 0.1. We also study eccentric binary orbits. We show that in this case resonances can occur at all harmonics of the orbital frequency, significantly extending the range of frequencies where cloud depletion may be observable with gravitational wave interferometers.Comment: 12 pages, 6 figures. v2: references added, matches published versio

    Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8

    Get PDF
    Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the ground-doublet. Since Gamma is found comparable to the expected tunneling rate, the latter process has to be inelastic. A model for the coupling of the tunneling levels to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review Letter

    On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries

    Full text link
    The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseudo-spin symmetries. We analyze the presence of cylindrical symmetric scalar potentials which allows us to provide analytic solutions for the resultant field equation. By using an appropriate ansatz, we find that the radial equation is a biconfluent Heun-like differential equation. The solution of this equation provides us with more than one expression for the energy eigenvalues of the oscillator. We investigate these energies and find that there is a quantum condition between them. We study this condition in detail and find that it requires the fixation of one of the physical parameters involved in the problem. Expressions for the energy of the oscillator are obtained for some values of the quantum number nn. Some particular cases which lead to known physical systems are also addressed.Comment: 15 pages, 8 figures, matches published versio

    Undecidability as solution to the problem of measurement: fundamental criterion for the production of events

    Get PDF
    In recent papers we put forth a new interpretation of quantum mechanics, colloquially known as ``the Montevideo interpretation''. This interpretation is based on taking into account fundamental limits that gravity imposes on the measurement process. As a consequence one has that situations develop where a reduction process is undecidable from an evolution operator. When such a situation is achieved, an event has taken place. In this paper we sharpen the definition of when and how events occur, more precisely we give sufficient conditions for the occurrence of events. We probe the new definition in an example. In particular we show that the concept of undecidability used is not ``FAPP'' (for all practical purposes), but fundamental.Comment: 10 pages, contributed to the Castagnino Festschrif
    corecore