170 research outputs found

    Prediction of Slow-Moving Landslide Mobility Due to Rainfall Using a Two-Wedges Model

    Get PDF
    In the present study, the landslides cyclically reactivated by water-table oscillations due to rainfall are dealt with. The principal kind of motion that usually characterizes such landslides is a slide with rather small velocity. As another feature, soil deformations are substantially accumulated inside a narrow shear zone situated below the landslide body so that the latter approximately slides rigidly. Within this framework, a new approach is developed in this paper to predict the mobility of this type of landslides due to rainfall. To this end, a two-wedges model is used to schematize the moving soil mass. Some analytical solutions are derived to link rain recordings with water-table fluctuations and in turn to landslide displacements. A well-documented landslide frequently activated by rainfall is studied to check the forecasting capacity of the proposed method

    Kinematics of the Maierato Landslide (Calabria, Southern Italy)

    Get PDF
    Abstract On 15 February 2010, a landslide of great dimensions occurred at Maierato (Southern Italy) after a long rainy period. Although the zone was continuously affected by movements, no monitoring system was installed before the landslide. However, many photos were taken to document the occurrence of deformations and two videos were filmed during the paroxysmal phase of the event. Photos and videos are used in the present study to reconstruct the kinematics of the landslide. A geotechnical model of the slope is also defined on the basis of the results from field and laboratory tests

    Short wheat challenge is a reproducible in-vivo assay to detect immune response to gluten.

    Get PDF
    It has been reported that interferon (IFN)-γ-secreting T cells reactive to gluten can be detected in the peripheral blood of individuals with treated coeliac disease (CD) after a short consumption of wheat-containing food. By contrast, very little is known about the reproducibility of this in-vivo procedure in the same patient cohort which underwent two, or more, gluten consumptions. Fourteen coeliac patients in remission consumed wheat bread for 3 days; 13 underwent a second gluten challenge after a wash-out of 3-10 months on a strict gluten-free diet. Immune reactivity to gluten was analysed in peripheral blood by detecting IFN-γ before and 6 days after commencing a gluten diet. Gliadin-specific IFN-γ-secreting CD4(+) T cells increased significantly on day 6 of the first challenge. These cells resulted as prevalently human leucocyte antigen (HLA)-DQ restricted and with a phenotype of gut homing, as suggested by the expression of β7-integrin. Similarly, reactiveness to gliadin was observed after the second wheat consumption, although with an individual variability of responses at each challenge. Our findings confirmed that the short wheat challenge is a non-invasive approach to investigate the gluten-related immune response in peripheral blood of subjects intolerant to gluten. Furthermore, we demonstrated that the in-vivo procedure can be reproduced in the same subject cohort after a gluten wash-out of at least 3 months. Our study has important implications for the application of this procedure to clinical practice

    In vitro-deranged intestinal immune response to gliadin in type 1 diabetes.

    Get PDF
    Dietary gluten has been associated with an increased risk of type 1 diabetes. We have evaluated inflammation and the mucosal immune response to gliadin in the jejunum of patients with type 1 diabetes. Small intestinal biopsies from 17 children with type 1 diabetes without serological markers of celiac disease and from 50 age-matched control subjects were examined by immunohistochemistry. In addition, biopsies from 12 type 1 diabetic patients and 8 control subjects were cultured with gliadin or ovalbumin peptic-tryptic digest and examined for epithelial infiltration and lamina propria T-cell activation. The density of intraepithelial CD3(+) and gammadelta(+) cells and of lamina propria CD25(+) mononuclear cells was higher in jejunal biopsies from type 1 diabetic patients versus control subjects. In the patients' biopsies cultured with peptic-tryptic gliadin, there was epithelial infiltration by CD3(+) cells, a significant increase in lamina propria CD25(+) and CD80(+) cells and enhanced expression of lamina propria CD54 and crypt HLA-DR. No such phenomena were observed in control subjects, even those with celiac disease-associated HLA haplotypes. In conclusion, signs of mucosal inflammation were present in jejunal biopsies from type 1 diabetic patients, and organ culture studies indicate a deranged mucosal immune response to gliadin

    Potential Celiac Patients: A Model of Celiac Disease Pathogenesis

    Get PDF
    BACKGROUND AND AIM: Potential celiacs have the 'celiac type' HLA, positive anti-transglutaminase antibodies but no damage at small intestinal mucosa. Only a minority of them develops mucosal lesion. More than 40 genes were associated to Celiac Disease (CD) but we still do not know how those pathways transform a genetically predisposed individual into an affected person. The aim of the study is to explore the genetic features of Potential CD individuals. METHODS: 127 'potential' CD patients entered the study because of positive anti-tissue transglutaminase and no mucosal lesions; about 30% of those followed for four years become frankly celiac. They were genotyped for 13 polymorphisms of 'candidate genes' and compared to controls and celiacs. Moreover, 60 biopsy specimens were used for expression studies. RESULTS: Potential CD bear a lighter HLA-related risk, compared to celiac (??(2)???=???48.42; p value???=???1Ă—10(-8)). They share most of the polymorphisms of the celiacs, but the frequency of c-REL* G allele was suggestive for a difference compared to celiac (??(2)???=???5.42; p value???=???0.02). One marker of the KIAA1109/IL-2/IL-21 candidate region differentiated potentials from celiac (rs4374642: ??2???=???7.17, p value???=???0.01). The expression of IL-21 was completely suppressed in potentials compared to celiacs (p value???=???0.02) and to controls (p value???=???0.02), in contrast IL-2, KIAA1109 and c-REL expression were over-expressed. CONCLUSIONS: Potential CD show genetic features slightly different from celiacs. Genetic and expression markers help to differentiate this condition. Potential CD is a precious biological model of the pathways leading to the small intestinal mucosal damage in genetically predisposed individuals

    Generation and Characterization of a Tumor Stromal Microenvironment and Analysis of Its Interplay with Breast Cancer Cells: An In Vitro Model to Study Breast Cancer-Associated Fibroblast Inactivation

    Get PDF
    Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells

    RNA-Based Assay for Next-Generation Sequencing of Clinically Relevant Gene Fusions in Non-Small Cell Lung Cancer

    Get PDF
    Gene fusions represent novel predictive biomarkers for advanced non-small cell lung cancer (NSCLC). In this study, we validated a narrow NGS gene panel able to cover therapeutically-relevant gene fusions and splicing events in advanced-stage NSCLC patients. To this aim, we first assessed minimal complementary DNA (cDNA) input and the limit of detection (LoD) in different cell lines. Then, to evaluate the feasibility of applying our panel to routine clinical samples, we retrospectively selected archived lung adenocarcinoma histological and cytological (cell blocks) samples. Overall, our SiRe RNA fusion panel was able to detect all fusions and a splicing event harbored in a RNA pool diluted up to 2 ng/µL. It also successfully analyzed 46 (95.8%) out of 48 samples. Among these, 43 (93.5%) out of 46 samples reproduced the same results as those obtained with conventional techniques. Intriguingly, the three discordant results were confirmed by a CE-IVD automated real-time polymerase chain reaction (RT-PCR) analysis (Easy PGX platform, Diatech Pharmacogenetics, Jesi, Italy). Based on these findings, we conclude that our new SiRe RNA fusion panel is a valid and robust tool for the detection of clinically relevant gene fusions and splicing events in advanced NSCLC
    • …
    corecore