122 research outputs found

    Adult type diffuse gliomas in the new 2021 WHO Classification

    Get PDF
    Adult-type diffuse gliomas represent a group of highly infiltrative central nervous system tumors with a prognosis that significantly varies depending on the specific subtype and histological grade. Traditionally, adult-type diffuse gliomas have been classified based on their morphological features with a great interobserver variability and discrepancy in patient survival even within the same histological grade. Over the last few decades, advances in molecular profiling have drastically changed the diagnostic approach and classification of brain tumors leading to the development of an integrated morphological and molecular classification endowed with a more clinically relevant value. These concepts were largely anticipated in the revised fourth-edition of WHO classification of central nervous system tumors published in 2016. The fifth-edition (WHO 2021) moved molecular diagnostics forward into a full integration of molecular parameters with the histological features into an integrative diagnostic approach. Diagnosis of adult type diffuse gliomas, IDH mutant and IDH-wildtype has been simplified by introducing revised diagnostic and grading criteria. In this review, we will discuss the most recent updates to the classification of adult-type diffuse gliomas and summarize the essential diagnostic keys providing a practical guidance to pathologists

    Defects in MMR Genes as a Seminal Example of Personalized Medicine: From Diagnosis to Therapy

    Get PDF
    Microsatellite instability (MSI) is the landmark feature of DNA mismatch repair deficiency, which can be found in 15–20% of all colorectal cancers (CRC). This specific set of tumors has been initially perceived as a niche for geneticists or gastroenterologists focused on inherited predispositions. However, over the years, MSI has established itself as a key biomarker for the diagnosis, then extending to forecasting the disease behavior and prognostication, including the prediction of responsiveness to immunotherapy and eventually to kinase inhibitors, and possibly even to specific biological drugs. Thanks to the contribution of the characterization of MSI tumors, researchers have first acknowledged that a strong lymphocytic reaction is associated with a good prognosis. This understanding supported the prognostic implications in terms of the low metastatic potential of MSI-CRC and has led to modifications in the indications for adjuvant treatment. Furthermore, with the emergence of immunotherapy, this strong biomarker of responsiveness has exemplified the capability of re-activating an effective immune control by removing the brakes of immune evasion. Lately, a subset of MSI-CRC emerged as the ideal target for kinase inhibitors. This therapeutic scenario implies a paradox in which appropriate treatments for advanced disease are effective in a set of tumors that seldom evolve towards metastases

    Abnormalities of Thymic Stroma may Contribute to Immune Dysregulation in Murine Models of Leaky Severe Combined Immunodeficiency

    Get PDF
    Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified repertoire of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypomorphic mutations in genes that control T cell development have been associated with immunodeficiency and immune dysregulation both in humans and in mice. We have studied T cell development and thymic stroma architecture and maturation in two mouse models of leaky severe combined immune deficiency, carrying hypomorphic mutations in rag1 and lig4 genes. Defective T cell development was associated with abnormalities of thymic architecture that predominantly affect the thymic medulla, with reduction of the pool of mature medullary thymic epithelial cells (mTECs). While the ability of mTECs to express autoimmune regulator (Aire) is preserved in mutant mice, the frequency of mature mTECs expressing Aire and tissue-specific antigens is severely reduced. Similarly, the ability of CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is preserved in rag1 and lig4 mutant mice, but their number is greatly reduced. These data indicate that hypomorphic defects in T cell development may cause defective lymphostromal cross-talk and impinge on thymic stromal cells maturation, and thus favor immune dysregulation

    Rag defects and thymic stroma: lessons from animal models

    Get PDF
    Thymocytes and thymic epithelial cells (TECs) cross-talk is essential to support T cell development and preserve thymic architecture and maturation of TECs and Foxp3+ natural regulatory T cells. Accordingly, disruption of thymic lymphostromal cross-talk may have major implications on the thymic mechanisms that govern T cell tolerance. Several genetic defects have been described in humans that affect early stages of T cell development [leading to severe combined immune deficiency (SCID)] or late stages in thymocyte maturation (resulting in combined immunodeficiency). Hypomorphic mutations in SCID-causing genes may allow for generation of a limited pool of T lymphocytes with a restricted repertoire. These conditions are often associated with infiltration of peripheral tissues by activated T cells and immune dysregulation, as best exemplified by Omenn syndrome (OS). In this review, we will discuss our recent findings on abnormalities of thymic microenvironment in OS with a special focus of defective maturation of TECs, altered distribution of thymic dendritic cells and impairment of deletional and non-deletional mechanisms of central tolerance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss how modifications in stromal compartment impact and shape lymphocyte differentiation, and vice versa how inefficient T cell signaling results in defective stromal maturation. These findings are instrumental to understand the extent to which novel therapeutic strategies should act on thymic stroma to achieve full immune reconstitution

    A multimodal staged approach for the resection of a Sylvian aqueduct rosette-forming glioneuronal tumor: A case report and literature review

    Get PDF
    Abstract Background and importance The rosette-forming glioneuronal tumor (RGNT) is a rare central nervous system tumor which often arises intraventricularly. We report the first surgical case of an RGNT arising from the Sylvian aqueduct treated through a double approach. Clinical presentation A 25-year-old female presented with triventricular hydrocephalus on MRI secondary to a 2 cm Sylvian aqueduct mass. Emergent endoscopic third ventriculostomy with biopsy confirmed the diagnosis of RGNT. She was first followed up and due to the rapid tumor's growth a double surgical approach was proposed. The first was a telo-velar approach to the lower third of the aqueduct. The second stage was an endoscopic ultrasound aspirator aided transfrontal transforaminal approach; last postoperative MRI shows a 6 mm residual tumor. Patient leads an active working and social life. Conclusion Choosing a two stages approach for this rare and complex Sylvian aqueduct RGNT resulted in a positive clinical and radiological outcome

    glioblastoma models driven by different mutations converge to the proneural subtype

    Get PDF
    Abstract The need of reliable syngeneic animal models for gliomas has been addressed in the last decades by reproducing genetic alterations typical of human glioblastoma in the mouse. Since different alterations underlie different molecular glioblastoma subtypes it is commonly expected that tumors induced by specific alterations represent models of the corresponding subtypes. We tested this assumption by a multilevel analysis ranging from a detailed histopathological analysis to a genome-wide expression profiling by microarray and RNA-seq on gliomas induced by two distinct molecular alterations: the overstimulation of the PDGF- and the EGF- pathways. These alterations are landmarks of proneural and classical glioblastoma subtypes respectively. However, our results consistently showed a strong similarity between the two glioma models. The expression profiles of both models converged toward a signature typical of oligodendrocyte progenitor cells, regardless the wide differentiative potential of the cell of origin. A classification based on similarity with human gliomas profiles revealed that both models belong to the proneural subtype. Our results highlight that reproducing a molecular alteration specific of a glioblastoma subtype not necessarily generates a tumor model recapitulating such subtype

    TREM2 sustains microglial expansion during aging and response to demyelination

    Get PDF
    Microglia contribute to development, homeostasis, and immunity of the CNS. Like other tissue-resident macrophage populations, microglia express the surface receptor triggering receptor expressed on myeloid cells 2 (TREM2), which binds polyanions, such as dextran sulphate and bacterial LPS, and activates downstream signaling cascades through the adapter DAP12. Individuals homozygous for inactivating mutations in TREM2 exhibit demyelination of subcortical white matter and a lethal early onset dementia known as Nasu-Hakola disease. How TREM2 deficiency mediates demyelination and disease is unknown. Here, we addressed the basis for this genetic association using Trem2(-/-) mice. In WT mice, microglia expanded in the corpus callosum with age, whereas aged Trem2(-/-) mice had fewer microglia with an abnormal morphology. In the cuprizone model of oligodendrocyte degeneration and demyelination, Trem2(-/-) microglia failed to amplify transcripts indicative of activation, phagocytosis, and lipid catabolism in response to myelin damage. As a result, Trem2(-/-) mice exhibited impaired myelin debris clearance, axonal dystrophy, oligodendrocyte reduction, and persistent demyelination after prolonged cuprizone treatment. Moreover, myelin-associated lipids robustly triggered TREM2 signaling in vitro, suggesting that TREM2 may directly sense lipid components exposed during myelin damage. We conclude that TREM2 is required for promoting microglial expansion during aging and microglial response to insults of the white matter

    Absence of Rac1 and Rac3 GTPases in the nervous system hinders thymic, splenic and immune-competence development

    Get PDF
    The nervous system influences organ development by direct innervation and the action of hormones. We recently showed that the specific absence of Rac1 in neurons (Rac1N) in a Rac3-deficient (Rac3KO) background causes motor behavioural defects, epilepsy, and premature mouse death around postnatal day 13. We report here that Rac1N/Rac3KO mice display a progressive loss of immune-competence. Comparative longitudinal analysis of lymphoid organs from control, single Rac1N or Rac3KO, and double Rac1N/Rac3KO mutant animals showed that thymus development is preserved up to postnatal day 9 in all animals, but is impaired in Rac1N/Rac3KO mice at later times. This is evidenced by a drastic reduction in thymic cell numbers. Cell numbers were also reduced in the spleen, leading to splenic tissue disarray. Organ involution occurs in spite of unaltered thymocyte and lymphocyte subset composition, and proper mature T-cell responses to polyclonal stimuli in vitro. Suboptimal thymus innervation by tau-positive neuronal terminals possibly explains the suboptimal thymic output and arrested thymic development, which is accompanied by higher apoptotic rates. Our results support a role for neuronal Rac1 and Rac3 in dictating proper lymphoid organ development, and suggest the existence of lymphoid-extrinsic mechanisms linking neural defects to the loss of immune-competence
    corecore