4,245 research outputs found

    Real-time self-adaptive deep stereo

    Full text link
    Deep convolutional neural networks trained end-to-end are the state-of-the-art methods to regress dense disparity maps from stereo pairs. These models, however, suffer from a notable decrease in accuracy when exposed to scenarios significantly different from the training set, e.g., real vs synthetic images, etc.). We argue that it is extremely unlikely to gather enough samples to achieve effective training/tuning in any target domain, thus making this setup impractical for many applications. Instead, we propose to perform unsupervised and continuous online adaptation of a deep stereo network, which allows for preserving its accuracy in any environment. However, this strategy is extremely computationally demanding and thus prevents real-time inference. We address this issue introducing a new lightweight, yet effective, deep stereo architecture, Modularly ADaptive Network (MADNet) and developing a Modular ADaptation (MAD) algorithm, which independently trains sub-portions of the network. By deploying MADNet together with MAD we introduce the first real-time self-adaptive deep stereo system enabling competitive performance on heterogeneous datasets.Comment: Accepted at CVPR2019 as oral presentation. Code Available https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stere

    AFLP analysis to assess genomic stability in Solanum regenerants derived from wild and cultivated species

    Get PDF
    The cultivated potato as well as its tuber-bearing relatives are considered model plants for cell and tissue culture, and therefore for exploiting the genetic variation induced by in vitro culture. The association between molecular stability and tissue culture in different genetic backgrounds and ploidy levels has already been explored. However, it still remains to be ascertained whether somaclonal variation differs between callus-derived chromosome- doubled and undoubled regenerants. Our research aimed at investigating, through amplified fragment length polymorphism (AFLP) markers, the genetic changes in marker- banding patterns of diploid and tetraploid regenerants obtained from one clone each of Solanum bulbocastanum Dunal and S. cardiophyllum Lindl (both 2n = 2x = 24) and tetraploids from cultivated S. tuberosum L. (2n = 4x = 48). Pairwise comparisons between the banding patterns of regenerants and parents allowed detecting considerable changes associated to in vitro culture both at diploid and tetraploid level. The percentages of polymorphic bands between diploid and tetraploid regenerants were, respectively, 57 and 69% in S. bulbocastanum and 58 and 63% in S. cardiophyllum. On average, the frequencies of lost parental fragments in regenerants were significantly higher than novel bands both in S. bulbocastanum (48 vs. 22%) and S. tuberosum (36 vs. 18%) regenerants. By contrast, in S. cardiophyllum, a similar incidence of the two events was detected (32 vs. 29%). Our results revealed that structural changes after tissue culture process strongly affected the genome of the species studied, but diploid and tetraploids regenerated plants responded equally

    Laparoscopic Left Liver Sectoriectomy of Caroli's Disease Limited to Segment II and III

    Get PDF
    Caroli's disease is defined as a abnormal dilatation of the intra-hepatica bile ducts: Its incidence is extremely low (1 in 1,000,000 population) and in most of the cases the whole liver is interested and liver transplantation is the treatment of choice. In case of dilatation limited to the left or right lobe, liver resection can be performed. For many year the standard approach for liver resection has been a formal laparotomy by means of a large incision of abdomen that is characterized by significant post-operatie morbidity. More recently, minimally invasive, laparoscopic approach has been proposed as possible surgical technique for liver resection both for benign and malignant diseases. The main benefits of the minimally invasive approach is represented by a significant reduction of the surgical trauma that allows a faster recovery a less post-operative complications

    ANTITHROMBOTIC PROPHYLAXIS IN MICROSURGERY

    Get PDF
    Background. The most common complication of microsurgical reconstruction is graft failure secondary to thrombosis. It is clear that thromboprophylaxis is helpful for a successful microsurgery. However, it's also obvious that thrombosis can't be avoided in cases of poor microsurgical technique. There is no consensus regarding the use of anticoagulation therapy during and after microsurgery. The authors compared two different antithrombotic prophylaxis protocols used in the past ten years, and analyzed the effectiveness and risks of different pharmacological protocols. Materials and methods. The authors performed a retrospective review of microsurgical patients operated between 2005-2014 by the same surgical team. 37 patients (Group A) operated between 2005-2010 and 45 patients (Group B) operated between 2011-2014 were selected. The majority of patients had generic and specific risk factors. Different thromboprophylaxis therapies were used in the two groups. While reviewing medical records, the authors compared Hb values before and after surgery, the free flap success rate, the need for blood transfusions intra and post-op in order to assess the efficacy (failure rate), and safety of the administered antithrombotic therapies (bleeding complications). Results. The pharmacological protocol used for the patients from Group B was more effective and less risky compared to results obtained from Group A. The therapy used in Group B did not increase the risk of bleeding and postoperative blood loss, and the flap success rate in Group B was significantly higher than that of Group A (p<0.000). Discussion and Conclusion. This study suggests that even in a perfect microanastomosis, prothrombotic mechanisms are activated, which lead to flap failure. A reasoned and balanced drug therapy can counteract the natural tendency of pedicle thrombosis, without exposing the patient to bleeding complications. Vasoactive drugs, although still experimental in microsurgery, may be used in the near future in order to further improve the success rates of free flap

    Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding.

    Get PDF
    Protoplast fusion between incongruent Solanum bulbocastanum and S. tuberosum haploids was accomplished to produce hybrids combining elite traits from both parents. We identified 11 somatic hybrids out of 42 regenerants analyzed through ISSR markers. Some hybrids had loss or gain of fragments compared to the parents, likely due to rearrangements and deletions of chromosome segments after fusion, and/or to somaclonal variation during hybrid regeneration. Increased heterotic vigor for some traits as well as high diversity was observed as the effect of both ploidy and fusion combination. Microsporogenesis analysis indicated the occurrence of multivalent configurations and several meiotic abnormalities, such as chromosomes bridges and various spindle orientations. Since all hybrids were sterile, in vitro anther culture was employed for haploidization as a possible strategy to overcome barriers to hybridizations. Haploids were obtained from all the tetraploid S. bulbocastanum (+) S. tuberosum somatic hybrids tested, although with differences in both the number of embryos per 100 anthers cultured and the number of differentiated green plantlets. This is the first report on the successful production of haploid plants from S. bulbocastanum (+) S. tuberosum hybrids

    Resistance to Ralstonia Solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum

    Get PDF
    This research was carried out to study the levels of bacterial wilt resistance and genetic diversity of (near) pentaploid sexual hybrids between S. commersonii (2n = 2x = 24, 1EBN) and cultivated S. tuberosum. Following artificial inoculations with Ralstonia solanacearum, wilting degree was estimated on a scale from 0 to 4, and seven genotypes of 26 (27%) displaying a S. commersonii like behavior were identified. Latent bacterial colonizations were detected in roots of symptomless S. commersonii and hybrids, whereas no bacterial populations were detected within stems. This suggests that the movement and/or growth of the bacterium in the aerial part were strongly inhibited. A molecular study with AFLP markers clustered hybrids into nine groups and provided evidence that resistant hybrids were slightly more similar to cultivated S. tuberosum than to the wild parent. This is important in view of the re-establishment of the cultivated genetic background through backcrosses. Hybrids displayed good fertility and are being used for further breeding efforts

    Continual Adaptation for Deep Stereo

    Get PDF
    Depth estimation from stereo images is carried out with unmatched results by convolutional neural networks trained end-to-end to regress dense disparities. Like for most tasks, this is possible if large amounts of labelled samples are available for training, possibly covering the whole data distribution encountered at deployment time. Being such an assumption systematically unmet in real applications, the capacity of adapting to any unseen setting becomes of paramount importance. Purposely, we propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments. We design a lightweight and modular architecture, Modularly ADaptive Network (MADNet), and formulate Modular ADaptation algorithms (MAD, MAD++) which permit efficient optimization of independent sub-portions of the entire network. In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms. With both sources, no other data than the input images being gathered at deployment time are needed. Thus, our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system and pave the way for a new paradigm that can facilitate practical deployment of end-to-end architectures for dense disparity regression
    corecore