2,015 research outputs found

    A Modelling Approach for Assessing the Hydrogeological Equilibrium of the Karst, Coastal Aquifer of the Salento Peninsula (Southeastern Italy): Evaluating the Effects of a MAR Facility for Wastewater Reuse

    Get PDF
    The Salento Peninsula is characterized by poor surface water resources, due to the karstic nature of its territory. On the other hand, important groundwater resources are located in the deep, karst, coastal aquifer, which is of strategic importance for the economic and social development of the area. The increasing water demand, however, if not properly managed may pose serious problems to the hydrogeological equilibrium of this aquifer, which is highly susceptible to natural and anthropogenic changes and to saltwater intrusion. Taking steps from the previous works, the present paper focuses on the characterization of the deep aquifer of the Adriatic portion of the Salento Peninsula from a quantitative point of view by means of modelling tools for the simulation of groundwater dynamics. Conclusions about the extent of the saltwater intrusion phenomenon are consequently inferred. As a result of the implementation of a density-dependent flow model, the lateral extent of such phenomenon and the vertical depth of the transition zone between freshwater and saltwater were inferred, highlighting also the role of major faults which characterize the hydraulic behaviour of the karst system under exam. The model was also applied to design a Managed Aquifer Recharge facility for management and protection of the hydrogeological equilibrium of the deep aquifer. Its positive effects on the advancement of the saline front were highlighted. Model results also allowed identifying areas where the lack of data prevents a proper comprehension of the hydrogeological processes investigated, thus representing a supporting tool for planning further monitoring campaigns

    ANN Modelling to Optimize Manufacturing Process

    Get PDF
    Neural network (NN) model is an efficient and accurate tool for simulating manufacturing processes. Various authors adopted artificial neural networks (ANNs) to optimize multiresponse parameters in manufacturing processes. In most cases the adoption of ANN allows to predict the mechanical proprieties of processed products on the basis of given technological parameters. Therefore the implementation of ANN is hugely beneficial in industrial applications in order to save cost and material resources. In this chapter, following an introduction on the application of the ANN to the manufacturing process, it will be described an important study that has been published on international journals and that has investigated the use of the ANNs for the monitoring, controlling and optimization of the process. Experimental observations were collected in order to train the network and establish numerical relationships between process-related factors and mechanical features of the welded joints. Finally, an evaluation of time-costs parameters of the process, using the control of the ANN model, is conducted in order to identify the costs and the benefits of the prediction model adopted

    Mild Hypoxia Enhances Proliferation and Multipotency of Human Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%.We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of β-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation.These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease

    A Feasible Methodological Approach to Estimate the Burden of Autism Spectrum Disorder: Results from the EPI-ASD Study in the Province of Lecce (Southern Italy)

    Get PDF
    Diagnoses of Autism Spectrum Disorder (ASD) have rapidly increased globally. However, the lack of comprehensive epidemiological surveys and surveillance systems, able to provide official data at a national or European level is one of the main issues in the monitoring of this condition. The present study aimed to estimate the prevalence of ASD in children and adolescents aged 3-18 years old living in the province of Lecce (Southern Italy) through official data provided by the Local Health Authority of Lecce (ASL/LE) up to 31 October 2020, and compare it with school-based data concerning the number of students needing support for ASD. Based on data provided by the ASL/LE, in 2020 there were 509 cases of ASD among children and adolescents aged 3-18 years old, corresponding to a prevalence of 0.46%. A total of 408 (80.2%) were boys and 101 (19.8%) were girls. In relation to their age, 155 ASD cases (0.90%) were diagnosed in the 3-5 age group, while 222 (0.55%) in the 6-11 age group and 132 (0.25%) in the 12-18 age group. Prevalence of ASD assessed by school-based dataset was underestimated in the 3-5 age group, while the 6-11 and 12-18 age groups were consistent with the official data provided by the ASL/LE

    Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria

    Get PDF
    The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosan–silver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–Vis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity

    Phytoremediation of toxic metals in soils and wetlands: concepts and applications (Book Chapter)

    Get PDF
    Over centuries, industrial, mining and military activities, agriculture, farming, and waste practices have contaminated soils and wetlands in many countries with high concentrations of toxic metals. In addition to their negative effects on ecosystems and other natural resources, toxic metals pose a great danger to human health. Unlike organic compounds, metals cannot be degraded, and clean-up usually requires their removal. Most of the conventional remedial methods have lost economic favor and public acceptance because they are expensive and cause degradation of soil fertility that subsequently results in adverse impacts on the ecosystem. Conventional methods of environmental remediation do not solve the problem; rather they merely transfer it to future generation. Obviously, there is an urgent need for alternative, cheap, and efficient methods to clean-up sites contaminated with toxic metals. Phytoremediation, a plant-based green technology, is cost effective, environmental friendly, aesthetically pleasing approach for the remediation of toxic metals. Due to its elegance and the extent of contaminated areas, phytoremediation approaches have already received significant scientific and commercial attention. Two approaches have been proposed for the phytoremediation of toxic metals from soils and wetlands: natural and induced phytoremediation. Natural phytoremediation refers to the use of hyper-accumulating plants and associated soil microbes, while the induced phytoremediation refers to the use chemicals, especially synthetic chelating ligands, for the increase of metal bioavailability and uptake in plants. Recently, genetically modified plants (GMPs) have been proposed to use in phytoremediation technology; however, this approach is being hindered by ideology-driven restrictive legislation over the use of GMPs. We will discuss the concepts and practical applications of phytoremediation technologies for the restoration of contaminated soils and wetlands. © Springer Japan 2016. All rights are reserved.[Book Chapter
    • …
    corecore