8 research outputs found

    ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy.

    Get PDF
    ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts. Accordingly, A-T NPCs obtained through neural differentiation of iPSCs in 5% oxygen possessed some features of senescence including increased activity of SA-Ξ²-gal and secretion of IL6 and IL8 in comparison to control NPCs. This phenotype of A-T NPC was accompanied by elevated oxidative stress. A-T NPCs exhibited symptoms of impaired autophagy and mitophagy with lack of response to chloroquine treatment. Additional sources of oxidative stress like increased oxygen concentration (20 %) and H2O2 respectively aggravated the phenotype of senescence and additionally disturbed the process of mitophagy. In both cases only A-T NPCs reacted to the treatment. We conclude that oxidative stress may be responsible for the phenotype of senescence and impairment of autophagy in A-T NPCs. Our results point to senescent A-T cells as a potential therapeutic target in this disease

    Mild Hypoxia Enhances Proliferation and Multipotency of Human Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%.We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of Ξ²-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation.These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease

    A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage

    Get PDF
    AbstractThe checkpoint kinase Chk2 is an effector component of the ATM-dependent DNA damage response (DDR) pathway. The activation of Chk2 by genotoxic stress involves its phosphorylation on T68 by ATM and additional auto/transphosphorylations. Here we demonstrate that in unperturbed cells, chemical inhibition of Chk2 by VRX0466617 (VRX) enhances the phosphorylation of Chk2-T68 throughout the cell cycle phases. This event, dependent on the presence of ATM and catalytically functional Chk2, is not consequential to DNA damage, as neither Ξ³-H2AX nuclear foci nor increased ATM activation is detected in VRX-treated cells, suggesting the involvement of other regulatory proteins. As serine/threonine protein phosphatases (PPs) regulate the phosphorylation and deactivation of proteins of the DDR pathway, we analyzed their role in phospho-T68-Chk2 regulation. We found that intracellular inhibition of PP1 and PP2A-like activities by okadaic acid markedly raised the accumulation of Chk2-pT68 without DNA damage induction, and this phenomenon was also seen when PP1-C, PP2A-C, and Wip1/PPM1D were simultaneously knockdown by siRNA. Altogether, these data indicate a novel mechanism in undamaged cells where PPs function to maintain the balance between ATM and its direct substrate Chk2 through a regulatory circuit

    DNA Damage-Induced Cell Cycle Regulation and Function of Novel Chk2 Phosphoresidues

    No full text
    Chk2 kinase is activated by DNA damage to regulate cell cycle arrest, DNA repair, and apoptosis. Phosphorylation of Chk2 in vivo by ataxia telangiectasia-mutated (ATM) on threonine 68 (T68) initiates a phosphorylation cascade that promotes the full activity of Chk2. We identified three serine residues (S19, S33, and S35) on Chk2 that became phosphorylated in vivo rapidly and exclusively in response to ionizing radiation (IR)-induced DNA double-strand breaks in an ATM- and Nbs1-dependent but ataxia telangiectasia- and Rad3-related-independent manner. Phosphorylation of these residues, restricted to the G(1) phase of the cell cycle, was induced by a higher dose of IR (>1 Gy) than that required for phosphorylation of T68 (0.25 Gy) and declined by 45 to 90 min, concomitant with a rise in Chk2 autophosphorylation. Compared to the wild-type form, Chk2 with alanine substitutions at S19, S33, and S35 (Chk2(S3A)) showed impaired dimerization, defective auto- and trans-phosphorylation activities, and reduced ability to promote degradation of Hdmx, a phosphorylation target of Chk2 and regulator of p53 activity. Besides, Chk2(S3A) failed to inhibit cell growth and, in response to IR, to arrest G(1)/S progression. These findings underscore the critical roles of S19, S33, and S35 and argue that these phosphoresidues may serve to fine-tune the ATM-dependent response of Chk2 to increasing amounts of DNA damage
    corecore