891 research outputs found
A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups
Schizophrenia is a disabling clinical syndrome found across the world. While the incidence and clinical expression of this illness are strongly influenced by ethnic factors, it is unclear whether patients from different ethnicities show distinct brain deficits. In this multicentre study, we used structural Magnetic Resonance Imaging to investigate neuroanatomy in 126 patients with first episode schizophrenia who came from 4 ethnically distinct cohorts (White Caucasians, African-Caribbeans, Japanese, and Chinese). Each patient was individually matched with a healthy control of the same ethnicity, gender, and age (±1 year). We report a reduction in the gray matter volume of the right anterior insula in patients relative to controls (P < .05 corrected); this reduction was detected in all 4 ethnic groups despite differences in psychopathology, exposure to antipsychotic medication and image acquisition sequence. This finding provides evidence for a neuroanatomical signature of schizophrenia expressed above and beyond ethnic variations in incidence and clinical expression. In light of the existing literature, implicating the right anterior insula in bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety, we speculate that the neuroanatomical deficit reported here may represent a transdiagnostic feature of Axis I disorders
A Novel Laboratory Course on Advanced Chemical Engineering Experiments
The chemical engineering curriculum in the United States has trained generations of technical experts who have successfully optimized chemical processes and products once they entered the chemical industry. The U.S. chemical industry, however, has entered a critical stage in which it must be able to create new and differentiated value through technical innovations that arc essential for long-term survival. This innovation process will require new skills that go far beyond the traditional expertise for the optimization of tasks possessed by young chemical engineers. The innovators must be able to identify new opportunities, explore the boundaries of technology, evaluate critical issues, develop and implement technologies, and communicate effectively with scientists and engineers from other disciplines. Therefore, one of the most important educational tasks of a modern university, in combination with a strong theoretical foundation, is to challenge students in laboratory courses to think, explore, hypothesize, plan, solve, and evaluate. The typical sequence of laboratory skills development stops short of introducing young engineers to the most critical aspects of experimental work. Chemical engineers usually begin developing their laboratory skills in chemistry courses, where experiments are closely managed. At this early stage in their development, students follow detailed instructions and learn basic principles by observing the results. In the undergraduate engineering laboratory course (the unit operations lab ), students have more freedom in experimental design but still have well-defined objectives and manipulate equipment someone else has set up. It is rare, however, for undergraduate students to be taught how to create new experiments. It is also rare for undergraduate students, and hence beginning graduate students, to have an appreciation for the care, planning, design, and testing required to produce equipment that will give reliable and useful results. Even such simple issues as leak testing or adapting analytical devices to new tasks are outside most students* experience. Even more important is an absence of opportunities to learn how the lessons learned from the failure of an approach can be fed back into the empirical process to seed the finally successful idea. All these skills require more creative freedom than is usually allowed in a well-structured laboratory course. In the novel laboratory teaching approach described here, we try to provide students with a learning environment that allows them to develop advanced experimental skills that are necessary for success in research and development environments
Trion induced negative photoconductivity in monolayer MoS2
Optical excitation typically enhances electrical conduction and low-frequency
radiation absorption in semiconductors. We have, however, observed a pronounced
transient decrease of conductivity in doped monolayer molybdenum disulfide
(MoS2), a two-dimensional (2D) semiconductor, under femtosecond laser
excitation. In particular, the conductivity is reduced dramatically down to
only 30% of its equilibrium value with high pump fluence. This anomalous
phenomenon arises from the strong many-body interactions in the system, where
photoexcited electron-hole pairs join the doping-induced charges to form
trions, bound states of two electrons and one hole. The resultant increase of
the carrier effective mass substantially diminishes the carrier conductivity
Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating
Graphene is a promising material for ultrafast and broadband photodetection.
Earlier studies addressed the general operation of graphene-based
photo-thermoelectric devices, and the switching speed, which is limited by the
charge carrier cooling time, on the order of picoseconds. However, the
generation of the photovoltage could occur at a much faster time scale, as it
is associated with the carrier heating time. Here, we measure the photovoltage
generation time and find it to be faster than 50 femtoseconds. As a
proof-of-principle application of this ultrafast photodetector, we use graphene
to directly measure, electrically, the pulse duration of a sub-50 femtosecond
laser pulse. The observation that carrier heating is ultrafast suggests that
energy from absorbed photons can be efficiently transferred to carrier heat. To
study this, we examine the spectral response and find a constant spectral
responsivity between 500 and 1500 nm. This is consistent with efficient
electron heating. These results are promising for ultrafast femtosecond and
broadband photodetector applications.Comment: 6 pages, 4 figure
Semiconducting Monolayer Materials as a Tunable Platform for Excitonic Solar Cells
The recent advent of two-dimensional monolayer materials with tunable
optoelectronic properties and high carrier mobility offers renewed
opportunities for efficient, ultra-thin excitonic solar cells alternative to
those based on conjugated polymer and small molecule donors. Using
first-principles density functional theory and many-body calculations, we
demonstrate that monolayers of hexagonal BN and graphene (CBN) combined with
commonly used acceptors such as PCBM fullerene or semiconducting carbon
nanotubes can provide excitonic solar cells with tunable absorber gap,
donor-acceptor interface band alignment, and power conversion efficiency, as
well as novel device architectures. For the case of CBN-PCBM devices, we
predict the limit of power conversion efficiencies to be in the 10 - 20% range
depending on the CBN monolayer structure. Our results demonstrate the
possibility of using monolayer materials in tunable, efficient, polymer-free
thin-film solar cells in which unexplored exciton and carrier transport regimes
are at play.Comment: 7 pages, 5 figure
Asymptotic normalization coefficients for 8B->7Be+p from a study of 8Li->7Li+n
Asymptotic normalization coefficients (ANCs) for 8Li->7Li+n have been
extracted from the neutron transfer reaction 13C(7Li,8Li)12C at 63 MeV. These
are related to the ANCs in 8B->7Be+p using charge symmetry. We extract ANCs for
8B that are in very good agreement with those inferred from proton transfer and
breakup experiments. We have also separated the contributions from the p_1/2
and p_3/2 components in the transfer. We find the astrophysical factor for the
7Be(p,gamma)8B reaction to be S_17(0)=17.6+/-1.7 eVb. This is the first time
that the rate of a direct capture reaction of astrophysical interest has been
determined through a measurement of the ANCs in the mirror system.Comment: 5 pages, 3 figures, 2 table
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
Ultrafast electron thermalization - the process leading to Auger
recombination, carrier multiplication via impact ionization and hot carrier
luminescence - occurs when optically excited electrons in a material undergo
rapid electron-electron scattering to redistribute excess energy and reach
electronic thermal equilibrium. Due to extremely short time and length scales,
the measurement and manipulation of electron thermalization in nanoscale
devices remains challenging even with the most advanced ultrafast laser
techniques. Here, we overcome this challenge by leveraging the atomic thinness
of two-dimensional van der Waals (vdW) materials in order to introduce a highly
tunable electron transfer pathway that directly competes with electron
thermalization. We realize this scheme in a graphene-boron nitride-graphene
(G-BN-G) vdW heterostructure, through which optically excited carriers are
transported from one graphene layer to the other. By applying an interlayer
bias voltage or varying the excitation photon energy, interlayer carrier
transport can be controlled to occur faster or slower than the intralayer
scattering events, thus effectively tuning the electron thermalization pathways
in graphene. Our findings, which demonstrate a novel means to probe and
directly modulate electron energy transport in nanoscale materials, represent
an important step toward designing and implementing novel optoelectronic and
energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
Water-Gated Charge Doping of Graphene Induced by Mica Substrates
We report on the existence of water-gated charge doping of graphene deposited
on atomically flat mica substrates. Molecular films of water in units of ~0.4
nm-thick bilayers were found to be present in regions of the interface of
graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish
graphite. The spectral variation of the G and 2D bands, as visualized by Raman
mapping, shows that mica substrates induce strong p-type doping in graphene,
with hole densities of {-2}$. The ultrathin water
films, however, effectively block interfacial charge transfer, rendering
graphene significantly less hole-doped. Scanning Kelvin probe microscopy
independently confirmed a water-gated modulation of the Fermi level by 0.35 eV,
in agreement with the optically determined hole density. The manipulation of
the electronic properties of graphene demonstrated in this study should serve
as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012
Mechanical properties of freely suspended atomically thin dielectric layers of mica
We have studied the elastic deformation of freely suspended atomically thin
sheets of muscovite mica, a widely used electrical insulator in its bulk form.
Using an atomic force microscope, we carried out bending test experiments to
determine the Young's modulus and the initial pre-tension of mica nanosheets
with thicknesses ranging from 14 layers down to just one bilayer. We found that
their Young's modulus is high (190 GPa), in agreement with the bulk value,
which indicates that the exfoliation procedure employed to fabricate these
nanolayers does not introduce a noticeable amount of defects. Additionally,
ultrathin mica shows low pre-strain and can withstand reversible deformations
up to tens of nanometers without breaking. The low pre-tension and high Young's
modulus and breaking force found in these ultrathin mica layers demonstrates
their prospective use as a complement for graphene in applications requiring
flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5,
Number 8 (2012
- …