101 research outputs found
Revised estimates of influenza-associated excess mortality, United States, 1995 through 2005
<p>Abstract</p> <p>Background</p> <p>Excess mortality due to seasonal influenza is thought to be substantial. However, influenza may often not be recognized as cause of death. Imputation methods are therefore required to assess the public health impact of influenza. The purpose of this study was to obtain estimates of monthly excess mortality due to influenza that are based on an epidemiologically meaningful model.</p> <p>Methods and Results</p> <p>U.S. monthly all-cause mortality, 1995 through 2005, was hierarchically modeled as Poisson variable with a mean that linearly depends both on seasonal covariates and on influenza-certified mortality. It also allowed for overdispersion to account for extra variation that is not captured by the Poisson error. The coefficient associated with influenza-certified mortality was interpreted as ratio of total influenza mortality to influenza-certified mortality. Separate models were fitted for four age categories (<18, 18β49, 50β64, 65+). Bayesian parameter estimation was performed using Markov Chain Monte Carlo methods. For the eleven year study period, a total of 260,814 (95% CI: 201,011β290,556) deaths was attributed to influenza, corresponding to an annual average of 23,710, or 0.91% of all deaths.</p> <p>Conclusion</p> <p>Annual estimates for influenza mortality were highly variable from year to year, but they were systematically lower than previously published estimates. The excellent fit of our model with the data suggest validity of our estimates.</p
Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood
Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARΞ± and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood
Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders
BACKGROUND: Autism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC). METHODS: We measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression. RESULTS: Two mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain. CONCLUSIONS: Alterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0029-9) contains supplementary material, which is available to authorized users
Transmission of class I/II multi-locus MHC haplotypes and multiple sclerosis susceptibility: accounting for linkage disequilibrium.
The human major histocompatibility complex (MHC) class II region is associated with genetic susceptibility to multiple sclerosis (MS). Roles for HLA class I loci have been supported in several case-control studies, but this methodology does not consider the known linkage disequilibrium (LD) between class I and II loci. In 1258 individuals from 294 MS families, we analysed class I and II interactions. Using transmission disequilibrium test and haplotype analyses, we found positive associations between MS and several HLA-DRB1*15-HLA-A haplotypes including HLA-DRB1*15-HLA-A*02 (P = 2.41 x 10(-5)) and -HLA-A*03 (P = 8.42 x 10(-6)) and several HLA-DRB1*15-HLA-B haplotypes including HLA-DRB1*15-HLA-B*07 (P = 2.23 x 10(-10)). HLA-DRB1*15 haplotypes divergent for reported HLA-A allelic associations were equally over-transmitted, illustrating no detectable effect of HLA-A or -B alleles in cis on susceptibility. HLA-A and -B alleles on haplotypes not bearing HLA-DRB1*15 were not over-transmitted. Similarly, general over-transmission of HLA-DRB1*15 haplotypes was independent of the HLA-B allele present. Furthermore, HLA-B*07 haplotypes from HLA-DRB1*X-HLA-B*X/HLA-DRB1*X-HLA-B*07 heterozygous parents were transmitted per random expectation giving no indication of HLA-B independence or trans complementation of HLA-DRB1*15 by HLA-DRB1*X-HLA-B*07 haplotypes. These results imply that many reports of class I allelic associations in MS are class II dependent, secondary to LD with class II loci. The lack of independent class I associations suggests that virus-related class I-antigen complexes are not T-cell targets in MS. The inability to replicate confirmed case-control associations highlights the importance of family-based analyses. The frequency of allelic associations not being replicated emphasizes the requirement for constructing multi-locus haplotypes in dissecting associations in regions of tight LD
Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo.
OBJECTIVE: To investigate the antiangiogenesis mechanism of epigallocatechin-3-gallate (EGCG) in an endometriosis model in vivo. DESIGN: Animal studies. SETTING: University laboratory. ANIMAL(S): Human endometrium from women with endometriosis (n = 10) was transplanted into immunocompromised mice. INTERVENTION(S): Mice (n = 30) were randomly treated with EGCG, vitamin E (antioxidant control), or vehicle (negative control) for microvessel imaging. MAIN OUTCOME MEASURE(S): Endometriotic implants were collected for angiogenesis microarray and pathway analysis. Differentially expressed angiogenesis molecules were confirmed by quantitative polymerase chain reaction, Western blot, and immunohistochemistry. Effects of EGCG on angiogenesis signal transduction were further characterized in a human endothelial cell line. Microvessel parameters and the angiogenesis signaling pathway in endometriotic implants and endothelial cells were studied. RESULT(S): EGCG, but not vitamin E, inhibited microvessels in endometriotic implants. EGCG selectively suppressed vascular endothelial growth factor C (VEGFC) and tyrosine kinase receptor VEGF receptor 2 (VEGFR2) expression. EGCG down-regulated VEGFC/VEGFR2 signaling through c-JUN, interferon-Ξ³, matrix metalloproteinase 9, and chemokine (C-X-C motif) ligand 3 pathways for endothelial proliferation, inflammatory response, and mobility. EGCG also suppressed VEGFC expression and reduced VEGFR2 and ERK activation in endothelial cells. VEGFC supplementation attenuated the inhibitory effects by EGCG. CONCLUSION(S): EGCG inhibited angiogenesis and suppressed VEGFC/VEGFR2 expression and signaling pathway in experimental endometriosis in vivo and endothelial cells in vitro
Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo.
OBJECTIVE: To investigate the antiangiogenesis mechanism of epigallocatechin-3-gallate (EGCG) in an endometriosis model in vivo. DESIGN: Animal studies. SETTING: University laboratory. ANIMAL(S): Human endometrium from women with endometriosis (n = 10) was transplanted into immunocompromised mice. INTERVENTION(S): Mice (n = 30) were randomly treated with EGCG, vitamin E (antioxidant control), or vehicle (negative control) for microvessel imaging. MAIN OUTCOME MEASURE(S): Endometriotic implants were collected for angiogenesis microarray and pathway analysis. Differentially expressed angiogenesis molecules were confirmed by quantitative polymerase chain reaction, Western blot, and immunohistochemistry. Effects of EGCG on angiogenesis signal transduction were further characterized in a human endothelial cell line. Microvessel parameters and the angiogenesis signaling pathway in endometriotic implants and endothelial cells were studied. RESULT(S): EGCG, but not vitamin E, inhibited microvessels in endometriotic implants. EGCG selectively suppressed vascular endothelial growth factor C (VEGFC) and tyrosine kinase receptor VEGF receptor 2 (VEGFR2) expression. EGCG down-regulated VEGFC/VEGFR2 signaling through c-JUN, interferon-Ξ³, matrix metalloproteinase 9, and chemokine (C-X-C motif) ligand 3 pathways for endothelial proliferation, inflammatory response, and mobility. EGCG also suppressed VEGFC expression and reduced VEGFR2 and ERK activation in endothelial cells. VEGFC supplementation attenuated the inhibitory effects by EGCG. CONCLUSION(S): EGCG inhibited angiogenesis and suppressed VEGFC/VEGFR2 expression and signaling pathway in experimental endometriosis in vivo and endothelial cells in vitro
- β¦