503 research outputs found

    Deployable Aeroshell Flexible Thermal Protection System Testing

    Get PDF
    Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned

    Brief Embryonic Strychnine Exposure in Zebrafish Causes Long-Term Adult Behavioral Impairment with Indications of Embyronic Synaptic Changes

    Get PDF
    Zebrafish provide a powerful model of the impacts of embryonic toxicant exposure on neural development that may result in long-term behavioral dysfunction. In this study, zebrafish embryos were treated with 1.5mM strychnine for short embryonic time windows to induce transient changes in inhibitory neural signaling, and were subsequently raised in untreated water until adulthood. PCR analysis showed indications that strychnine exposure altered expression of some genes related to glycinergic, GABAergic and glutamatergic neuronal synapses during embryonic development. In adulthood, treated fish showed significant changes in swimming speed and tank diving behavior compared to controls. Taken together, these data show that a short embryonic exposure to a neurotoxicant can alter development of neural synapses and lead to changes in adult behavior

    Dynamic Bayesian networks for integrating multi-omics time-series microbiome data

    Get PDF
    . A key challenge in the analysis of longitudinal microbiomes data is to go beyond computing their compositional profiles and infer the complex web of interactions between the various microbial taxa, their genes, and the metabolites they consume and produce. To address this challenge, we developed a computational pipeline that first aligns multi-omics data and then uses dynamic Bayesian networks (DBNs) to integrate them into a unified model. We discuss how our approach handles the different sampling and progression rates between individuals, how we reduce the large number of different entities and parameters in the DBNs, and the construction and use of a validation set to model edges. Applying our method to data collected from Inflammatory Bowel Disease (IBD) patients, we show that it can accurately identify known and novel interactions between various entities and can improve on current methods for learning such interactions. Experimental validations support several predictions about novel metabolite-taxa interactions. The source code is freely available under the MIT Open Source license agreement and can be downloaded from https://github.com/DaniRuizPerez/longitudinal_multiomic_analysis_public

    Dynamic bayesian networks for integrating multi-omics time series microbiome data

    Get PDF
    A key challenge in the analysis of longitudinal microbiome data is theinference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges,we developed a computational pipeline, a pipeline for the analysis of longitudinalmulti-omics data (PALM), that first aligns multi-omics data and then uses dynamicBayesian networks (DBNs) to reconstruct a unified model. Our approach overcomesdifferences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs,and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novelinteractions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactionsFil: Ruiz Perez, Daniel. Florida International University; Estados UnidosFil: Lugo Martinez, Jose. University of Carnegie Mellon; Estados UnidosFil: Bourguignon, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Florida International University; Estados Unidos. Universidad Tecnológica Nacional; ArgentinaFil: Mathee, Kalai. Florida International University; Estados UnidosFil: Lerner, Betiana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; ArgentinaFil: Bar Joseph, Ziv. University of Carnegie Mellon; Estados UnidosFil: Narasimhan, Giri. Florida International University; Estados Unido

    Dynamic bayesian networks for integrating multi-omics time series microbiome data

    Get PDF
    A key challenge in the analysis of longitudinal microbiome data is the inference of temporal interactions between microbial taxa, their genes, the metabolites that they consume and produce, and host genes. To address these challenges, we developed a computational pipeline, a pipeline for the analysis of longitudinal multi-omics data (PALM), that first aligns multi-omics data and then uses dynamic Bayesian networks (DBNs) to reconstruct a unified model. Our approach overcomes differences in sampling and progression rates, utilizes a biologically inspired multiomic framework, reduces the large number of entities and parameters in the DBNs, and validates the learned network. Applying PALM to data collected from inflammatory bowel disease patients, we show that it accurately identifies known and novel interactions. Targeted experimental validations further support a number of the predicted novel metabolite-taxon interactions

    Visual Hallucinations in a Patient with Myxedema Coma

    Get PDF
    Myxedema coma is a rare endocrine complication of hypothyroidism. Infections and cardiovascular diseases are the most common precipitants. Rarely, visual hallucinations are seen as part of the disease process, as they are more commonly caused by other psychiatric, pathological, metabolic, or hormonal disorders. We report a 72-year-old Caucasian male was brought to emergency room for rapid onset of weight gain, bilateral lower extremity edema, and visual hallucinations for a week. His past medical history was significant for with medical history of hypothyroidism, coronary artery disease status post one stent, essential hypertension, right renal cell carcinoma status post nephrectomy on chemotherapy, and chronic kidney disease stage 4. Initial laboratory results revealed hyponatremia, elevated liver enzymes, elevated thyroid stimulating hormone, low free thyroxine. A diagnosis of myxedema coma was established. He received thyroxine, mineralocorticoid supplement, hypertonic intravenous fluid, and intensive supportive care. Suspicion of myxedema coma should be treated without delay in order to avoid devastating outcomes.American College of Physician

    Human Mars Entry, Descent and Landing Architecture Study: Rigid Decelerators

    Get PDF
    Several technology investments are required to develop Mars human scale Entry, Descent, and Landing (EDL) systems. Studies play the critical role of identifying the most feasible technical paths and high payoff investments. The goal of NASA's Entry, Descent and Landing Architecture Study is to inform those technology investments. In Phase 1 of the study, a point design for one lifting-body-like rigid decelerator vehicle, was developed. In Phase 2, a capsule concept was also considered to determine how it accommodated the human mission requirements. This paper summarizes the concept of operations for both rigid vehicles to deliver a 20-metric ton (t) payload to the surface of Mars. Details of the vehicle designs and flight performance are presented along with a packaging, mass sizing, and a launch vehicle fairing assessment. Finally, recommended technology investments based on the analysis of the rigid vehicles are provided
    corecore