90 research outputs found

    Correlated imaging, quantum and classical

    Get PDF
    We analytically show that it is possible to perform coherent imaging by using the classical correlation of two beams obtained by splitting incoherent thermal radiation. A formal analogy is demonstrated between two such classically correlated beams and two entangled beams produced by parametric down-conversion. Because of this analogy, the classical beams can mimic qualitatively all the imaging properties of the entangled beams, even in ways which up to now were not believed possible. A key feature is that these classical beams are spatially correlated both in the near field and in the far field. Using realistic numerical simulations the performances of a quasithermal and a parametric down-conversion source are shown to be closely similar, both for what concerns the resolution and statistical properties. The results of this paper provide a scenario for the discussion of what role the entanglement plays in correlated imaging

    Hexagon patterns in optical bistability

    Get PDF
    The mean-field model of optical bistability in a ring cavity is extended to include diffraction in two transverse dimensions. Nonlinear analysis in the neighborhood of the instability of the homogeneous solution indicates the formation of stable hexagonal patterns, and this is confirmed by numerical simulation, with reasonable quantitative agreement. Simulations with higher excitation show defect structures and complex dynamical patterns

    Mode-locking via dissipative Faraday instability

    Get PDF
    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system - spectrally dependent losses - achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering

    Stokes solitons in optical microcavities

    Get PDF
    Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy

    Gain through losses in nonlinear optics

    Get PDF
    Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organization, pattern formation and noise amplification across diverse disciplines, including physics, chemistry, engineering and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied. In the present review article, we summarize the principle results on modulation instabilities and parametric amplification in nonlinear optics, with special emphasis on optical fibres. We then review state-of-the-art research about a peculiar class of modulation instabilities and signal amplification processes induced by dissipation in nonlinear optical systems. Losses applied to certain parts of the spectrum counterintuitively lead to the exponential growth of the damped mode themselves, causing gain through losses. We discuss the concept of imaging of losses into gain, showing how to map a given spectral loss profile into a gain spectrum. We demonstrate with concrete examples that dissipation-induced modulation instability, apart from being of fundamental theoretical interest, may pave the way towards the design of a new class of tuneable fibre-based optical amplifiers, optical parametric oscillators, frequency comb sources and pulsed lasers

    Experimental Investigation of the Single-Mode Instability in Optical Bistability

    No full text
    Instabilities in optical systems form a very rich and exciting field of work. A great deal of theoretical effort has been devoted to understanding the complex behavior observed in the experiments. Active optical systems such as the laser have attracted more attention than passive systems; among the latter, the driven cavity filled with a collection of two-state atoms represents a canonical system in optical physics. Its study has shown optical bistability, instabilities, higher-order dynamical states and non-classical quantum statistics of the transmitted field
    • …
    corecore