1,557 research outputs found

    Evaluation of Portable Multi-Gas Analyzers for use by Safety Personnel

    Get PDF
    During confined space entry operations as well as Shuttle-safing operations, United Space Alliance (USA)/National Aeronautics and Space Administration (NASA) safety personnel use a variety of portable instrumentation to monitor for hazardous levels of compounds such as nitrogen dioxide (N%), monomethylhydrazine (NMM), FREON 21, ammonia (NH3), oxygen (O2), and combustibles (as hydrogen (H2)). Except for O2 and H2, each compound is monitored using a single analyzer. In many cases these analyzers are 5 to 10 years old and require frequent maintenance. In addition, they are cumbersome to carry and tend to make the job of personnel monitoring physically taxing. As part of an effort to upgrade the sensor technology background information was requested from a total of 27 manufacturers of portable multi-gas instruments. A set of criteria was established to determine which vendors would be selected for laboratory evaluation. These criteria were based on requests made by USA/NASA Safety personnel in order to meet requirements within their respective areas for confined-space and Shuttle-safing operations. Each of the 27 manufacturers of multi-gas analyzers was sent a copy of the criteria and asked to fill in the appropriate information pertaining to their instrumentation. Based on the results of the sensor criteria worksheets, a total of 9 vendors out of 27 surveyed manufacturers were chosen for evaluation. Each vendor included in the final evaluation process was requested to configure each of two analyzers with NO2, NH3, O2, and combustible sensors. A set of lab tests was designed in order to determine which of the multi-gas instruments under evaluation was best suited for use in both shuttle and confined space operations. These tests included linearity/repeatability, zero/span drift response/recovery, humidity, interference, and maintenance. At the conclusion of lab testing three vendors were selected for additional field testing. Based on the results of both the lab and field evaluations a single vendor was recommended for use by NASA/IJSA Safety personnel. Vendor selection criteria, as well as the results from both laboratory and field testing of the multi-gas analyzers, are presented as part of this paper

    Development of an Automated Reader for Analysis and Storage of Personnel Dosimeter Badge Data

    Get PDF
    The collection and archiving of data from personnel dosimeters has become increasingly important in light of the lowered Threshold Limit Values (TLV) for HydraZine (HZ), MonoMethylHydrazine (MMH), and Unsymmetrical DiMethylHydrazine (UDMH). The American Conference of Government Industrial Hygienists (ACGIH) lowered the TLV from 100 parts per billion (ppb) to IO ppb and has caused increased concern over long term exposures of personnel to trace levels of these hypergols and other potentially harmful chemicals. An automated system of reading the exposure levels of personnel dosimeters and storing exposure data for subsequent evaluation has been developed. The reading of personnel dosimeter badges for exposure to potentially harmful vapor concentrations of hydrazines or other chemicals is performed visually by comparing the color developed by the badge with a calibrated color comparator. The result obtained using visual comparisons of the developed badge color with the comparator may vary widely from user to user. The automated badge reader takes the variability out of the dosimeter reading by accurately comparing the reflectance obtained from a colored spot on the badge with a reading on the same spot prior to any exposure to chemical vapors. The observed difference between the reflectance values is used as part of a calculation of the dose value for the badge based on a stored calibration curve. The badge reader also stores bar-code data unique to each badge, as well as bar-code information on the user, as part of the permanent badge record. The start and stop exposure times for each badge are recorded and can be used as part of the calculated concentration, in ppm, for each badge logged during a recording period. The badge reader is equipped with a number of badge holders, each of which is unique to a specific type of personnel dosimeter badge. This gives the reader maximum flexibility to allow for the reading of several different types of badges. Test results of the badge reader for several different types of personnel dosimeter badges are presented within the body of this paper

    Sample Diluter for Detecting Hypergolic Propellants and Other Toxic or Hazardous Gases

    Get PDF
    Hardware was developed to dilute vapor samples of purged hypergolic propellants (with air) into the range of existing instruments for detection of such toxic vapors. Since these detectors are normally used to monitor at the threshold limit value (TLV), most do not have quantitative capability at percent levels which relate to lower explosion limit (LEL) and fire hazards. For example, the upper limits of Energetic Sciences (ESI) 6000 series detectors used at KSC are 200 parts per million (ppm) for monomethyl hydrazine (MMH) and 500 ppm for nitrogen dioxide (NO2) arising from decomposition of nitrogen tetroxide (N2O4). Orbiter Processing Facility (OPF) personnel servicing Shuttle thrusters need to measure up to 250 ppm MMH and 7,500 ppm NO2 with portable, intrinsically safe instruments. Our objective was to quickly fabricate a sample diluter out of existing materials as a temporary measure while other parallel efforts were conducted to provide a commercial or in-house-developed instrument to detect high propellant levels. A 3 to 1 diluter would bring 500 ppm MMH into the range of the existing fuel ESI, and a 30 to 1 diluter would do the same for NO2. In this way, familiar equipment already available would be used, resulting in minimal paperwork, safety, and training impacts and low cost. An MMH vapor sample-diluter was constructed from a 1/4-inch Kynar tee, along with specially designed lengths of sample and dilution tubing. The sample line was 3 feet of Bev-A-Line 4, 1/4-inch tube leading to the straight run of the tee. The side run of the tee had a 17-inch length of Bev-A-Line 4, 1/4-inch tube, for nominal 3 to 1 dilution. A gas sample bag was prepared and assayed at 113 ppm ppm MMH, and diluted vapor samples were assayed at 39.5 ppm, or a measured dilution of 2.9 to 1. For NO2, a 316 stainless steel (SS) 1/8-inch tee with 49.5 inches of coiled, 1/8-inch outside diameter (OD) 316 SS tubing was used as the sampling end of the dilution system. The side run of the tee was open. The measured dilution ratio, based on the input value of 6,480 ppm NO2, and the average output value of 233 ppm, was 28 to 1. Thus, sample-diluters were successful in diluting concentrated hypergolic propellant vapors, both MMH and N2O4 into the ranges of existing TLV detectors

    Cost-benefit analysis for commissioning decisions in GEO600

    Get PDF
    Gravitational wave interferometers are complex instruments, requiring years of commissioning to achieve the required sensitivities for the detection of gravitational waves, of order 10^-21 in dimensionless detector strain, in the tens of Hz to several kHz frequency band. Investigations carried out by the GEO600 detector characterisation group have shown that detector characterisation techniques are useful when planning for commissioning work. At the time of writing, GEO600 is the only large scale laser interferometer currently in operation running with a high duty factor, 70%, limited chiefly by the time spent commissioning the detector. The number of observable gravitational wave sources scales as the product of the volume of space to which the detector is sensitive and the observation time, so the goal of commissioning is to improve the detector sensitivity with the least possible detector down time. We demonstrate a method for increasing the number of sources observable by such a detector, by assessing the severity of non-astrophysical noise contaminations to efficiently guide commissioning. This method will be particularly useful in the early stages and during the initial science runs of the aLIGO and adVirgo detectors, as they are brought up to design performance.Comment: 17 pages, 17 figures, 2 table

    Gravitational Wave Data Analysis: Computing Challenges in the 3G Era

    Get PDF
    Cyber infrastructure will be a critical consideration in the development of next generation gravitational-wave detectors. The demand for data analysis computing in the 3G era will be driven by the high number of detections as well as the expanded search parameter space for compact astrophysical objects and the subsequent parameter estimation follow-up required to extract the nature of the sources. Additionally, there will be an increased need to develop appropriate and scalable computing cyberinfrastructure, including data access and transfer protocols, and storage and management of software tools, that have sustainable development, support, and management processes. This report identifies the major challenges and opportunities facing 3G gravitational-wave observatories and presents recommendations for addressing them. This report is the fourth in a six part series of reports by the GWIC 3G Subcommittee: i) Expanding the Reach of Gravitational Wave Observatories to the Edge of the Universe, ii) The Next Generation Global Gravitational Wave Observatory: The Science Book, iii) 3G R&D: R&D for the Next Generation of Ground-based Gravitational Wave Detectors, iv) Gravitational Wave Data Analysis: Computing Challenges in the 3G Era (this report), v) Future Ground-based Gravitational-wave Observatories: Synergies with Other Scientific Communities, and vi) An Exploration of Possible Governance Models for the Future Global Gravitational-Wave Observatory Network

    Prototyping Self in Silicon Valley, Deep Diversity as a Framework for Anthropological Inquiry

    Get PDF
    High-technology work fuels a dynamic global exchange from technopoles throughout the world, but especially between East and South Asia and the northern Californian region of Silicon Valley. This migration drives an expanded number of ancestral identities. Professional and activity-based identities flourish as Silicon Valley’s strong narrative of meritocracy loosens the grip of birth ascription on the creation of identities. These achieved identities proliferate as people experiment on their own sense of self. Traditional conceptual tools related to immigration, and even such contemporary approaches as Appadurai’s ethnoscapes, do not adequately illuminate the ethnographic data on Silicon Valley workers, families, and especially youth. The concept of deep diversity, first posed by philosopher Charles Taylor and reified by anthropologist Clifford Geertz, reinterprets the interactions of traditional ethnic identity categories, providing a powerful framework with which to think

    Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages

    Get PDF
    Piñeiro, S., González-Pola, C., Fernández-Díaz, J. M., Naveira-Garabato, A. C., Sánchez-Leal, R., Puig, P., et al. (2021). Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages. Journal of Geophysical Research: Oceans, 126, e2020JC016535. https://doi.org/10.1029/2020JC016535. © 2020. American Geophysical Union. All Rights Reserved.© 2020. American Geophysical Union. All Rights Reserved. Major deep-convection activity in the northwestern Mediterranean during winter 2005 triggered the formation of a complex anomalous deep-water structure that substantially modified the properties of the Western Mediterranean deep layers. Since then, evolution of this thermohaline structure, the so-called Western Mediterranean Transition (WMT), has been traced through a regularly sampled hydrographic deep station located on the outer continental slope of Minorca Island. A rapid erosion of the WMT's near-bottom thermohaline signal was observed during 2005–2007. The plausible interpretation of this as local bottom-intensified mixing motivates this study. Here, the evolution of the WMT structure through 2005–2007 is reproduced by means of a one-dimensional diffusion model including double-diffusive mixing that allows vertical variation of the background mixing coefficient and includes a source term to represent the lateral advection of deep-water injections from the convection area. Using an optimization algorithm, a best guess for the depth-dependent background mixing coefficient is obtained for the study period. WMT evolution during its initial stages is satisfactorily reproduced using this simple conceptual model, indicating that strong depth-intensified mixing (K ∞ (z) ≈ 22 × 10−4 m2 s−1; z ⪆ 1,400 dbar) is a valid explanation for the observations. Extensive hydrographic and current observations gathered over the continental slope of Minorca during winter 2018, the first deep-convective winter intensively sampled in the region, provide evidence of topographically localized enhanced mixing concurrent with newly formed dense waters flowing along-slope toward the Algerian sub-basin. This transport-related boundary mixing mechanism is suggested to be a plausible source of the water-mass transformations observed during the initial stages of the WMT off Minorca.CTM2014-54374-R. BES-2015-074316.Versión del editor3,17

    Next Generation Observatories -- Report from the Dawn VI Workshop; October 5-7 2021

    Get PDF
    The workshop Dawn VI: Next Generation Observatories}took place online over three days, 5-7 October, 2021. More than 200 physicists and astronomers attended to contribute to, and learn from, a discussion of next-generation ground-based gravitational-wave detectors. The program was centered on the next generation of ground-based gravitational-wave observatories and their synergy with the greater landscape of scientific observatories of the 2030s. Cosmic Explorer (CE), a concept developed with US National Science Foundation support, was a particular focus; Einstein Telescope (ET), the European next generation concept, is an important complement and partner in forming a network. The concluding summary of the meeting expressed the sentiment that the observational science accessible to CE and ET, also in combination with data from other non-GW observatories, will stimulate a very broad community of analysts and yield insights which are exciting given the access to GWs from the entire universe. The need, and desire, for closer collaboration between ET and CE was expressed; a three-detector network is optimal for delivering much of the science. The science opportunities afforded by CE and ET are broad and compelling, impacting a wide range of disciplines in physics and high energy astrophysics. There was a consensus that CE is a concept that can deliver the promised science. A strong endorsement of Cosmic Explorer, as described in the CE Horizon Study, is a primary outcome of DAWN VI
    corecore