68 research outputs found

    Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking?

    Get PDF
    The effect of roasting of coffee beans and the extraction of ground coffee with different volumes of hot pressurised water on the caffeine and the total caffeoylquinic acids (CQAs) content of the resultant beverages was investigated. While caffeine was stable higher roasting temperatures resulted in a loss of CQAs so that the caffeine/CQA ratio was a good marker of the degree of roasting. The caffeine and CQA content and volume was determined for 104 espresso coffees obtained from coffee shops in Scotland, Italy and Spain, limited numbers of cappuccino coffees from commercial outlets and several instant coffees. The caffeine content ranged from 48–317 mg per serving and CQAs from 6–188 mg. It is evident that the ingestion of 200 mg of caffeine per day can be readily and unwittingly exceeded by regular coffee drinkers. This is the upper limit of caffeine intake from all sources recommended by US and UK health agencies for pregnant women. In view of the variable volume of serving sizes, it is also clear that the term “one cup of coffee” is not a reproducible measurement for consumption, yet it is the prevailing unit used in epidemiology to assess coffee consumption and to link the potential effects of the beverage and its components on the outcome of diseases. More accurate measurement of the intake of coffee and its potentially bioactive components are required if epidemiological studies are to produce more reliable information

    Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes

    Get PDF
    Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones. Objective: To investigate the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained men before and after cessation of training for 7 days. Design: Ten fit endurance-trained males, with a maximal oxygen consumption of 58.2 ± 5.3 mL/kg/min, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ, containing 398 µmol of (poly)phenols of which 330 µmol were flavanones. After the volunteers stopped training for 7 days the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ orange consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites using HPLC-HR-MS. Results: While training, 0-24 h urinary excretion of flavanone metabolites, mainly hesperetin-3-O-glucuronide, hesperetin-3´-sulfate, naringenin-4´-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 days. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites which after supplementation in the trained state were excreted in amounts equivalent to 51% of intake compared to 59% after cessation of training. However, urinary excretion of three colonic catabolites of bacterial origin, most notably, 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed post- compared to pre-cessation of training. Data were also obtained on inter-individual variations in flavanone bioavailability. Conclusion: A 7-day cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and, whether or not they extend to the bioavailability of other dietary (poly)phenols, remains to be determined. Hesperetin-3´-O-glucuronide and the colonic microbiota-derived catabolite 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products

    Assessment of total (free and bound) phenolic compounds in spent coffee extracts

    Get PDF
    Spent coffee is the main byproduct of the brewing process and a potential source of bioactive compounds, mainly phenolic acids easily extracted with water. Free and bound caffeoylquinic (3-CQA, 4-CQA, 5-CQA), dicaffeoylquinic (3,4-diCQA, 3,5-diCQA, 4,5-diCQA), caffeic, ferulic, p-coumaric, sinapic, and 4-hydroxybenzoic acids were measured by HPLC, after the application of three treatments (alkaline, acid, saline) to spent coffee extracts. Around 2-fold higher content of total phenolics has been estimated in comparison to free compounds. Phenolic compounds with one or more caffeic acid molecules were approximately 54% linked to macromolecules such as melanoidins, mainly by noncovalent interactions (up to 81% of bound phenolic compounds). The rest of the quantitated phenolic acids were mainly attached to other structures by covalent bonds (62-97% of total bound compounds). Alkaline hydrolysis and saline treatment were suitable to estimate total bound and ionically bound phenolic acids, respectively, whereas acid hydrolysis is an inadequate method to quantitate coffee phenolic acids

    Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: analysis by high-performance liquid chromatography–high-resolution mass spectrometry

    Get PDF
    Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0–24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography–high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites—comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol—and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed

    Influence of culinary process on free and bound (poly)phenolic compounds and antioxidant capacity of artichoke

    Get PDF
    Artichokes are an important source of (poly)phenolic compounds, mainly caffeoylquinic acids, which consumption has been associated with health benefits. However, heat treatments have shown to affect the amounts of these bioactive food compounds. In the present study the influence of culinary techniques (boiling, griddling, and frying) on the total (poly)phenolic content of artichokes (Cynara Scolymus cv. Blanca de Tudela) was evaluated by LC-MS/MS. Additionally, the antioxidant capacity of cooked artichokes was evaluated by spectrophotometric methods. A total of 31 (poly)phenols were identified and quantified, being caffeoylquinic acids the most abundant compounds in raw artichokes accounting for more than 95% of total (poly)phenolic compounds. With the different culinary techniques, these compounds suffered degradation but also redistribution, probably due to isomerization and hydrolysis reactions. Frying and griddling showed the lowest content of (poly)phenolic compounds and antioxidant capacity suggesting thermal degradation. Boiling also provoked losses, which were mainly due to leaching of phenolic compounds into the water. However, it was the heat treatment that best preserved (poly)phenolic compounds in artichokes

    New insights into the bioavailability of red raspberry anthocyanins and ellagitannins

    Get PDF
    Red raspberries, containing ellagitannins and cyanidin-based anthocyanins, were fed to volunteers and metabolites appearing in plasma and urine were analysed by UHPLC-MS. Anthocyanins were not absorbed to any extent with sub nmol/L concentrations of cyanidin-3-O-glucoside and a cyanidin-O-glucuronide appearing transiently in plasma. Anthocyanins excreted in urine corresponded to 0.007% of intake. More substantial amounts of phase II metabolites of ferulic acid and isoferulic acid, along with 4′-hydroxyhippuric acid, potentially originating from pH-mediated degradation of cyanidin in the proximal gastrointestinal tract, appeared in urine and also plasma where peak concentrations were attained 1–1.5 h after raspberry intake. Excretion of 18 anthocyanin-derived metabolites corresponded to 15.0% of intake, a figure substantially higher than obtained in other anthocyanin feeding studies. Ellagitannins pass from the small to the large intestine where the colonic microbiota mediate their conversion to urolithins A and B which appeared in plasma and were excreted almost exclusively as sulfate and glucuronide metabolites. The urolithin metabolites persisted in the circulatory system and were excreted in urine for much longer periods of time than the anthocyanin metabolites although their overall urinary recovery was lower at 7.0% of intake. It is events originating in the proximal and distal gastrointestinal tract, and subsequent phase II metabolism, that play an important role in the bioavailability of both anthocyanins and ellagitannins and it is their metabolites which appear in the circulatory system, that are key to elucidating the mode of action(s) underlying the protective effects of these compounds on human health

    Contribution of volatile compounds to the antioxidant capacity of coffee

    Get PDF
    Heterocyclic volatile compounds present in coffee have been proposed as potent antioxidants, but their contribution to the antioxidant capacity of coffee is still unclear and controversial. The aim of this study was to assess the actual contribution of the main volatile compounds to the overall antioxidant capacity of coffee. A total of sixty-two and sixty-four volatile compounds were identified and quantified in Arabica and Robusta coffee, respectively, by static headspace-gas chromatography-mass spectrometry (SH-GC-MS). ABTS (2,2′-Azino-bi(3-ethylbenzo-thiazonile-6-sulfonic acid) diammonium salt) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) antioxidant activity of the most abundant volatile heterocyclic compounds (7 furans (Fu), 3 pyrroles (Py) and 2 thiophenes (Th)), aldehydes (5) and diketones (2) was evaluated in model systems at different concentrations including those found in coffee. The model system with all the heterocyclic volatiles (Fu–Py–Th) was the most active followed by pyrroles and furans. Thiophenes were ineffective as radical scavengers at all concentrations including 100-fold, and aldehydes and ketones showed negligible activities in comparison to heterocyclic volatiles. In addition, only furans exhibited linear concentration dependent ABTS antioxidant activity and individual volatile model systems showed that only 2-methyl-tetrahydrofuran-3-one and pyrrole for ABTS, and also 1-methylpyrrole for DPPH, were the main volatile compounds responsible for the coffee antioxidant activity. However, the contribution of the heterocyclic volatile compounds to the overall antioxidant capacity of a filter coffee brew was almost insignificant, even at 100-fold concentrated Fu–Py–Th model system, accounting only for up to 3.3%
    • …
    corecore