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ABSTRACT 

Heterocyclic volatile compounds present in coffee have been proposed as potent antioxidants, 

but their contribution to the antioxidant capacity of coffee is still unclear and controversial. The 

aim of this study was to assess the actual contribution of the main volatile compounds to the 

overall antioxidant capacity of coffee. A total of sixty-two and sixty-four volatile compounds were 

identified and quantified in Arabica and Robusta coffee, respectively, by static headspace-gas 

chromatography-mass spectrometry (SH-GC-MS). ABTS (2,2’-Azino-bi(3-ethylbenzo-thiazonile-

6-sulfonic acid) diammonium salt) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) antioxidant activity 

of the most abundant volatile heterocyclic compounds (7 furans (Fu), 3 pyrroles (Py) and 2 

thiophenes(Th)), aldehydes (5) and diketones (2) was evaluated in model systems at different 

concentrations including those found in coffee. The model system with all the heterocyclic 

volatiles (Fu-Py-Th) was the most active followed by pyrroles and furans. Thiophenes were 

ineffective as radical scavengers at all concentrations including 100-fold, and aldehydes and 

ketones showed negligible activities in comparison to heterocyclic volatiles. In addition, only 

furans exhibited linear concentration dependent ABTS antioxidant activity and individual 

volatiles model systems showed that only 2-methyl-tetrahydrofuran-3-one and pyrrole for ABTS, 

and also 1-methylpyrrole for DPPH, were the main volatile compounds responsible for the 

coffee antioxidant activity. However, the contribution of the heterocyclic volatile compounds to 

the overall antioxidant capacity of a filter coffee brew was almost insignificant, even at 100-fold 

concentrated Fu-Py-Th model system, accounting only for up to 3.3%. 

 

KEYWORDS: antioxidants; aroma; coffee; GC/MS; volatiles 

 

  



 

2 
 

1 INTRODUCTION 

Coffee is well known as a good source of antioxidants (Esquivel & Jimenez, 2012). The 

presence of (poly)phenolic compounds, mainly chlorogenic acids, and other major coffee 

compounds, such as caffeine and melanoidins, and their contribution to the antioxidant capacity 

of coffee have been widely studied during last decades (Crozier, Jaganath & Clifford, 2009; 

Delgado-Andrade, Rufian-Henares & Morales, 2005; Ludwig, Sanchez, Caemmerer, Kroh, de 

Peña & Cid, 2012). However, coffee contains many other minor compounds, such as volatile 

compounds, that might play a role in the antioxidant capacity of coffee. 

Aroma is one of the most valuable properties of coffee. A great variety of volatile compounds, 

most of them Maillard reaction products (MRP), are generated during roasting of coffee beans 

at high temperatures. Besides their contribution to aroma and flavor, some typical volatile 

heterocyclic compounds found in coffee have been investigated for their antioxidant properties. 

Some authors (Fuster, Mitchell, Ochi, & Shibamoto, 2000; Yanagimoto, Lee, Ochi, & 

Shibamoto, 2002) analyzed individually the inhibitory effect of isolated volatile compounds on 

hexanal oxidation and reported considerable antioxidant activity for some pyrrols, furans and 

thiophenes whereas thiazoles and pyrazines were ineffective antioxidants at all concentrations 

tested. Later they suggested that some of these volatile compounds were mainly responsible for 

the antioxidant activity exhibited by a dichloromethane extract of coffee brew (Yanagimoto, 

Ochi, Lee, & Shibamoto, 2004). Furthermore, typical volatile compounds formed in Maillard 

reaction model systems have been reported to inhibit oxidation of lipids (Elizalde, Bressa, & 

Rosa, 1992; Osada & Shibamoto, 2006). Also, other authors observed that certain volatile 

compounds produced in the roasting process of almonds displayed an antioxidant effect 

(Severini, Gomes, De Pilli, Romani, & Massini, 2000). 

Maillard reaction products may contribute to a higher degree than chlorogenic acids to the 

overall antioxidant capacity in dark roasted coffee (Smrke, Opitz, Vovk, & Yeretzian, 2013). 

Although Maillard reaction products include volatiles and non-volatiles, the latter are the most 

abundant, with melanoidins accounting for up to 25% of coffee dry matter (Belitz, Grosch, & 

Schieberle, 2009). In a previous study of our research group, we found that coffees with higher 

antioxidant capacity showed lower amounts of volatile compounds due to the influence of the 

botanical variety (Arabica or Robusta) and the roasting process (conventional or torrefacto) 
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(Lopez-Galilea, de Peña, & Cid, 2008b). The application of multivariate studies (Pearson 

correlations and Principal Component Analysis) to the results also showed that some selected 

constituents, including heterocyclic volatile compounds, were significantly but negatively 

correlated with radical quenching activity suggesting a prooxidant capacity. When coffee brew 

preparation was studied, coffee pressure-brewing procedures, such as espresso and mocha, 

extracted more volatiles and showed higher antioxidant capacity than plunger and filter 

procedures, but no significant correlations between volatiles and antioxidant activity were found 

(Lopez-Galilea, de Peña, & Cid, 2007). Despite the different approaches in the reported studies, 

the results might not be considered as contradictory if it is taken into account that some 

compounds proposed as antioxidants may act as pro-oxidants at different doses (Andueza, 

Manzocco, de Peña, Cid & Nicoli, 2009; Halliwell, 2008) and that most of the works which study 

the antioxidant activity of volatiles have been carried out using standard compounds at 

concentration levels higher than those present in coffee. Thus, these results cannot be directly 

transferred to the knowledge of the contribution of volatiles to the antioxidant capacity of coffee.  

For the reasons outlined above, the aim of this study was to assess the actual contribution of 

the main volatile compounds, especially those proposed as potential antioxidants like 

heterocyclic ones, to the overall antioxidant capacity of coffee. This will reveal whether or not 

the coffee volatile compounds, and consequently coffee aroma, have a relevant role in the 

antioxidant capacity of coffee.  

 

2 MATERIALS AND METHODS 

2.1 Chemicals and reagents 

ABTS (2,2’-Azino-bi(3-ethylbenzo-thiazonile-6-sulfonic acid) diammonium salt), potassium 

persulfate, DPPH· (2,2-Diphenyl-1-picrylhydrazyl), Trolox (6-hydroxy-2,5,7,8-tetramethyl-

chroman-2-carboxylic acid), dipotassium hydrogen phosphate, potassium dihydrogen 

phosphate, sodium chloride, and pure reference standards for dimethyl sulfide, dimethyl 

disulfide, 2-furanmethanethiol, acetaldehyde, propanal, 2-methylpropanal, 2-methylbutanal, 3-

methylbutanal, hexanal, furan, 2-methylfuran, 2,5-dimethylfurane, 2-methyl-tetrahydrofuran-3-

one, furfural, 2-furfurylacetate, 5-methylfurfural, furfuryl alcohol, 2,3-butanedione, 2,3-

pentanedione, 2-methyl-1-propanol, thiophene, 2-methylthiophene,1-methylpyrrole, pyrrole, 2-
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formyl-1-methyl-pyrrole, 2-methylpyrazine, phenol, and 1,3-pentadiene were obtained from 

Sigma-Aldrich (Steinheim, Germany). The methanol was from Panreac (Barcelona, Spain). Pure 

reference standards of 2-methyl-2-butenal, 3-methylfuran, 2-furfuryl methyl sulfide, 2-

acetylfuran, 2-propanone, 2-butanone, 3-penten-2-one, pyridine, pyrazine, and 2,5-

dimethylpyrazine were purchased from Acros Organics (Springfield, NJ). 

2.2 Coffee samples 

Roasted coffee from Colombia (Coffea arabica, named Arabica, L* = 24.82±0.81, 

a*=12.70±0.13, b*=15.11±0.40) and Vietnam (Coffea canephora var. robusta, named Robusta, 

L* = 25.40±0.71, a*=11.84±0.36. b*=15.65±0.56) were provided by a local roasting company 

(Unión Tostadora, S.A.). Three samples of each coffee were analyzed. The L*, a* and b* values 

were analyzed by means of a tristimulus colorimeter (Chromameter-2 CR-200, Minolta, Osaka, 

Japan) using the D65 illuminant and CIE 1931 standard observer. The instrument was 

standardized against a white tile before sample measurements. Ground roasted coffee was 

spread out in a 1 cm Petri plate and the L*, a* and b* values were measured in triplicate on the 

CIELab scale. Coffee beans were ground for 20 s using a grinder (model Moulinex super junior 

“s”, París, France).  

Filter Coffee Brew was prepared from 36 g of ground roasted coffee for a volume of 600 mL of 

tap water (pH=7.0, 48-56 mg Ca/L), using a filter coffee machine (model Avantis 70 Aroma plus, 

Ufesa, Spain). Extraction took approx. 6 min at 90 °C. 

2.3 Volatile Compounds Analysis 

Volatile compounds were analyzed according to the method described by Maeztu, Sanz, 

Andueza, de Peña, Bello, & Cid (2001) using static headspace-gas chromatography-mass 

spectrometry (SH-GC-MS). Six mL of coffee or volatile compounds standards solution was 

introduced into a 20 mL vial, which was immediately sealed with a silicone rubber Teflon cap. 

Each vial was equilibrated at 40 °C for 15 min in the headspace sampler (model 7694E, Agilent 

Technologies, Palo Alto, CA), pressurized with carrier gas for 12 s, and 1 mL of the headspace 

sample was injected into an HP-Wax glass capillary column (60 m × 0.25 mm × 0.5 μm film 

thickness) in an HP 7890 gas chromatograph (Agilent Technologies). The injector temperature 

was 60 °C, and the carrier gas was helium (1 mL/min linear speed). The oven temperature was 

maintained at 40 °C for 3 min and then raised at 2.5 °C/min to 205 °C and maintained for 10 
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min. Mass spectrometry analysis was performed with a mass selective detector (model 5975C, 

Agilent Technologies) operating in the electron impact ionization mode (70 eV), with a scan 

range of 30-160 amu. Ion source temperature was set at 230 °C. Each sample was analyzed in 

triplicate.  

The volatile compounds were identified by comparing their mass spectra with those of pure 

reference compounds and also by comparing their Kovats indices with those of standard 

compounds. The Kovats indices were calculated according to the method of Tranchant (1982). 

Peak areas were measured by calculation of each volatile total area based on integration of a 

single ion. The ion used for area quantification of each volatile compound and the obtained 

areas are given in Table 1. Volatile compounds selected for model systems were additionally 

quantified by calibration curves to determine their concentrations in coffee. Aqueous solutions of 

each standard volatile compound were analyzed at different known concentrations and 

chromatographic areas obtained using selective ion monitoring (SIM) were plotted against 

concentration. Equations for each compound obtained by linear regression included the areas 

found in the coffee samples in all cases. Coefficients of linearity for the calibration curves were 

typically R2>0.99. 

2.4 Volatiles model systems 

Twelve volatile heterocyclic compounds (7 furans, 3 pyrroles, and 2 thiophenes) identified in 

roasted coffee by SH-GC-MS and previously reported as potential antioxidants (Fuster et al., 

2000; Yanagimoto et al., 2002, 2004) were selected to prepare 4 model systems: Furans (Fu), 

Pyrroles (Py), Thiophenes (Th) and Furans-Pyrroles-Thiophenes (Fu-Py-Th). Furthermore, five 

volatile aldehydes identified among the most abundant and previously reported as Maillard 

reaction products, and two diketones were selected to prepare other 2 model systems: 

Aldehydes and Ketones. Pure reference standards were dissolved in deionized water (pH=6.0) 

at concentrations equivalent to those found in coffee (Tables 2 and 3). When it was required, a 

previous solubilization with the minimum amount of methanol was made. Additionally, 10- and 

100-fold concentrated model systems were prepared to analyze dose dependent antioxidant 

activity.  

2.5 Antioxidant activity by ABTS assay 
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The antioxidant activity measured with ABTS was carried out according to the method 

described by Re, Pellegrini, Proteggente, Pannaia, Yang & Rice-Evans (1999) with some 

modifications. The ABTS·+ radicals were generated by the addition of 2.45 mM potassium 

persulfate to an 7 mM ABTS solution prepared in phosphate-buffered saline (PBS, pH 7.4) and 

allowing the mixture to stand in darkness at room temperature for at least 12 h before use. The 

ABTS·+ stock solution was adjusted with PBS to an absorbance of 0.7 (±0.02) at 734 nm in a 1 

cm cuvette at 25 °C (Lambda 25 UV, VIS spectrophotometer, Perkin Elmer Instruments, Madrid, 

Spain). An aliquot of 50 µL of coffee sample diluted with demineralized water (15:1000) or 50 µL 

of each model system was added to 2 mL of ABTS·+ reagent and the absorbance was 

measured spectrophotometrically at 734 nm after exactly 18 min at 25 °C. Calibration was 

performed with Trolox solution (a water-soluble vitamin E analogue) and total antioxidant activity 

was expressed as milimoles (mmol) of Trolox per liter of coffee brew or model system. 

2.6 Antioxidant capacity by DPPH assay.  

The antioxidant capacity was measured using the DPPH decolorization assay (Brand-Williams, 

Cuvelier, & Berset, 1995). A 6.1x10–5 M DPPH• methanol solution was prepared immediately 

before use. The DPPH· solution was adjusted with methanol to an absorbance of 0.7 (±0.02) at 

515 nm in a 1 cm cuvette at 25 ºC (Lambda 25 UV, VIS spectrophotometer, Perkin Elmer 

Instruments, Madrid, Spain). Fifty microliters of appropriate diluted coffee sample (3:100) or 

50 µL of each model system was added to DPPH· solution (1.95 mL). After mixing, the 

absorbance was measured spectrophotometrically at 515 nm after exactly 18 min at 25 ºC. 

Calibration was performed with Trolox solution and total antioxidant capacity was expressed as 

milimoles (mmol) of Trolox per liter of coffee brew or model system. 

2.7 Statistical analysis 

Each parameter was analyzed in triplicate. Results are shown as means ± standard deviations. 

Student’s t-test was applied to volatile compounds of Arabica and Robusta coffee samples. 

Linear regresion was applied to evaluate dose dependent increase in antioxidant activity. 

Statistical analyses were performed using the SPSS v.15.0 software package. 

 

3 RESULTS AND DISCUSSION 
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Figure 1 shows the chromatographic profiles of the volatile compounds of roasted Arabica and 

Robusta coffee. Table 1 shows the chromatographic areas of the identified compounds in both 

samples. A total of sixty-two and sixty-four volatile compounds were identified and quantified for 

Arabica and Robusta coffee, respectively. They comprised 4 sulfur compounds, 8 aldehydes, 6 

esters, 15 furans, 8 ketones, 5 alcohols, 2 thiophenes, 6 pyrroles, 2 pyridines, 4 pyrazines, 2 

thiazoles, 1 lactone, 2 phenolic compounds, 1 alkene, and 1 ether. 

Figure 1 

Table 1 

Arabica coffee showed a significantly higher total area of volatiles than Robusta (2.1x109 vs 

0.7x109, p<0.01), mainly because the most abundant volatile chemical classes (aldehydes, 

furans, ketones and esters) were significantly higher in Arabica samples (p<0.01). Aldehydes 

and esters are responsible for fruity and malty coffee flavor notes, whereas diketones contribute 

to the buttery aroma, and furans are considered to be responsible for the typical roasted coffee 

aroma (Semmelroch & Grosch, 1995; Maeztu et al., 2001; Flament, 2001). Similar results were 

reported in previous works of our group when volatile compounds of Arabica coffee were 

compared with those found in Arabica-Robusta coffee blends roasted by conventional or 

torrefacto techniques (Sanz, Maeztu, Zapelena, Bello, & Cid, 2002; Lopez-Galilea, Andriot, de 

Peña, Cid, & Guichard, 2008a). In contrast, chromatographic areas of pyrazines and pyridines, 

and in less proportion thiazoles, were higher in Robusta coffee. Pyrazines are responsible for 

roasted, earthy, musty and woody flavor notes characteristic of Robusta coffee (Blank, Sen & 

Grosch, 1991; Semmelroch & Grosch, 1995; Lopez-Galilea, Fournier, Cid, & Guichard, 2006) 

and pyridines contribute to smoky aroma (Flament, 2001). Also, low molecular weight phenolic 

compounds, and mainly 2-methoxyphenol (guaiacol) that is a key odorant responsible of 

phenolic and burnt aroma (Semmelroch & Grosch, 1995; Sanz et al., 2002; Lopez-Galilea et al., 

2006), were only detected in Robusta coffee samples at low levels but not in Arabica. Similar 

results were found by other authors in conventional roasted Arabica and Robusta coffee 

(Semmelroch & Grosch, 1995; Maeztu et al., 2001; Lopez-Galilea et al., 2008b) and coffee 

brews (Maeztu et al., 2001). 

The concentration of heterocyclic volatile compounds in coffee was firstly measured to further 

assess their actual contribution to the total antioxidant capacity of coffee at the concentration 
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usually found in coffee. Seven furans (furan, 2-methylfuran, 2,5-dimethylfuran, 2-methyl-

tetrahydrofuran-3-one, furfural, 5-methylfurfural and 2-furfurylacetate), three pyrroles (1-

methylpyrrole, pyrrole, and 2-formyl-1-methyl-pyrrole), and two thiophenes (thiophene and 2-

methylthiophene) were chosen because both they were previously proposed by other authors 

as potential antioxidants (Fuster et al., 2000; Yanagimoto et al., 2002, 2004), and their 

chromatographic areas were among the highest ones in the analyzed coffee samples. 

Concentrations of these volatile compounds were quantified in both Arabica and Robusta 

coffees based on the calibration curves of the corresponding standard. Results are shown in 

Table 2. Except in thiophenes with the same concentrations, Arabica coffee exhibited higher 

concentration in all analyzed compounds, showing considerably higher amounts of 2-methyl-

tetrahydrofuran-3-one (more than 5-fold) and 5-methylfurfural (almost 3-fold) than in Robusta 

coffee. It can also be observed that those volatiles with the highest chromatographic areas, 

such as 2-methylfuran, were not necessarily the most abundant in coffee in terms of 

concentration. The same applies in the opposite direction, i.e. some volatiles with the highest 

concentrations, such as 2-methyl-tetrahydrofuran-3-one, acetaldehyde and propanal, were not 

necessarily those with the highest chromatographic areas, In fact, the relationship between the 

chromatographic area and the concentration is characteristic  for each volatile compound at the 

same chromatographic conditions. For that reason, the results of the chromatographic areas of 

volatile compounds should not be directly considered as equivalent to their concentrations and 

consequently the quantification by chromatographic areas or by concentration should not be 

directly comparable.  

Table 2 

The results of the antioxidant activity of each heterocyclic volatiles model system (furans, 

pyrroles, thiophenes and Fu-Py-Th) prepared at the mean concentrations of each volatile 

compound found in Arabica and Robusta coffee (Table 3), and at 10- and 100-fold, are shown 

in comparison to the antioxidant activity of the coffee brew in Figure 2. The antioxidant activity 

of the coffee brew was calculated as the mean value (and standard deviations) of the Arabica 

and Robusta filter coffee brews. These results were similar to those reported by other authors in 

filter coffee brews (Perez-Martinez, Caemmerer, De Peña, Cid, & Kroh, 2010; Sanchez 

Gonzalez, Jimenez Escrig, & Saura Calixto, 2005; Ludwig et al, 2012). 
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Table 3 

Figure 2 

Furans are cyclic ethers present in heated and roasted foods. A great variety of furans are 

originated during roasting process in coffee as Maillard-reaction products, but they are also the 

result of thermal oxidation of lipids and thermal degradation of thiamine, nucleotides, terpenes 

(Flament, 2001) and proteins (Hwang, Chen, & Ho, 2012). In furan model system (Fu), no 

appreciable antioxidant activity at coffee furan concentration was observed. However, for the 

10-fold and 100-fold concentrated furan model systems, ABTS quenching activities equivalent 

to 0.08±0.01 and 0.85±0.02 mmol Trolox per liter were found, showing a linear dose dependent 

increase in antioxidant activity (r2=1), whereas DPPH results were 0.05±0.00 and 0.07±0.00 

mmol Trolox per liter, showing a non-linear dose dependent antioxidant increase (r2<0.6). To 

ascertain the contribution of each single furan to the overall Fu-model system antioxidant 

activity, volatile compounds were tested individually. Because the furan model system showed 

no antioxidant activity at concentration levels actually present in coffee, 10-fold concentrated 

solutions of each furan were used to measure the ABTS and DPPH antioxidant activity. From 

the 7 analyzed furans, only 2-methyl-tetrahydrofuran-3-one exhibits antioxidant activity. This 

activity (0.08±0.01 mmol Trolox per liter for ABTS and 0.05±0.00 mmol Trolox per liter for 

DPPH) was the same to that of the Fu-model system at the same concentration level (10-fold), 

showing that the antioxidant activity of the main coffee furans might be mainly attributed to this 

volatile compound, maybe because 2-methyl-tetrahydrofuran-3-one was by far the most 

abundant furan in coffee. Although five of the furans analyzed (namely furan, 2-methylfuran, 

furfural, 5-methylfurfural and 2-furfurylacetate) have been reported as potent antioxidants 

(Fuster et al., 2000; Yanagimoto et al., 2002, 2004), results obtained in this study show that 

even at concentrations 10-fold higher than actually present in coffee, only 2-methyl-

tetrahydrofuran-3-one exhibited a very limited radical scavenging activity.  

Pyrroles are formed during roasting process. Pyrrole and 1-methyl-pyrrole are formed in the 

pyrolysis of proline and threonine alone or combined with glucose or sucrose, and in the 

pyrolysis of trigonelline (Flament, 2001). 2-formyl-1-methylpyrrole is formed from 1-

methylpyrrole and also when D-xylose reacts thermally with various amines or amino acids 

(glycine, alanine, beta-alanine, leucine). In Pyrrole model system (Py), no appreciable 
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antioxidant activity was found at concentration levels equivalent to coffee. The 10-fold and 100-

fold concentrated pyrrole systems exhibited antioxidant activity equal to 0.32±0.01 and 

0.81±0.01 mmol Trolox per liter, respectively, for ABTS and 0.07±0.00 and 0.09±0.00 mmol 

Trolox per liter, respectively, for DPPH showing a non-linear dose dependent antioxidant activity 

increase (r2<0.9). In comparison with furans, pyrroles showed a 4 times higher ABTS radical 

quenching activity at 10-fold concentrations, but similar antioxidant activity at 100-fold 

concentrations. These results suggest a higher effectiveness of pyrroles at lower 

concentrations, as proposed by other authors (Fuster et al., 2000) but still undetectable at 

coffee concentration. To assess the contribution of each pyrrole, the three compounds were 

analyzed separately at 10-fold concentration by the ABTS and DPPH assays. Results reveal 

that the ABTS antioxidant activity measured for the Py model system might be totally attributed 

to pyrrole (0.32±0.01 mmol Trolox per liter), whereas 1-methylpyrrole and 2-formyl-1-

methylpyrrol seem to be ineffective in quenching ABTS radicals at the tested concentrations. 

However, when DPPH assay was applied, both 1-methylpyrrole and pyrrole model systems at 

10-fold concentration had similar antioxidant activity than Py model system (0.07±0.00 mmol 

Trolox per liter for pyrrole and 0.06±0.00 mmol Trolox per liter for 1-methylpyrrole). Also, 

Yanagimoto et al (2002) observed higher inhibition of hexanal oxidation by pyrrole than by 1-

methylpyrrole, but the inhibition was quite low for both volatile compounds (<10% at 10 µg/mL 

for pyrrole and <3% at 5-20 for µg/mL for 1-methylpyrrole). However, 2-formyl-1-methylpyrrole 

seems to be more effective as a lipophilic antioxidant inhibiting hexanal oxidation in 

dichloromethane solutions (Yanagimoto et al., 2002) than as a hydrophilic antioxidant, 

quenching radicals in aqueous solutions similar to coffee brews. 

Thiophenes present in roasted coffee can be formed by pyrolysis of sulfur amino acids as 

methionine or cysteine and cystine alone, or by browning reactions in the presence of sugars 

(Flament, 2001). Although some authors (Fuster et al., 2000; Yanagimoto et al., 2002) reported 

that both thiophenes found in coffee exhibit antioxidant activity, the results obtained in this study 

did not show radical quenching activity at any analyzed concentration level (coffee, 10-fold and 

100-fold). This could probably be due to the very low amounts of thiophenes used in this study 

to evaluate the ABTS and DPPH antioxidant activity even at the highest concentration (100-fold, 

with 10 µg/mL for tiophene and 2 µg/mL for 1-methylthiophene). Actually, these compounds are 
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present in coffee in very low amounts and therefore, although their antioxidant capacity was 

demonstrated at high concentrations (more than 50 µg/mL), tiophenes barely contribute to the 

antioxidant capacity of coffee. 

When the antioxidant activity of a model system containing all the 12 selected heterocyclic 

compounds (furans, pyrroles and thiophenes) was analyzed, no radical quenching activity was 

detected at concentration levels similar to coffee brew. At 10-fold concentrated sample ABTS 

and DPPH quenching activities were 0.35±0.02 and 0.08±0.00 mmol Trolox per liter for DPPH, 

respectively. One hundred-fold concentrated sample showed radical quenching activities of 

0.90±0.02 for ABTS and 0.09±0.00 mmol Trolox per liter for DPPH were observed, respectively. 

Thus, the radical quenching activity of the Fu-Py-Th model system was slightly higher than the 

maximum value showed for furans at 100-fold in ABTS and for pyrroles at 10-fold and 100-fold 

concentrations in both ABTS and DPPH assays, but not the sum. These results suggest 

antagonistic effects among furans, pyrroles and thiophenes. Moreover, when the radicals 

quenching activity of model systems was compared to the overall antioxidant capacity of a filter 

coffee brew, the results clearly showed the almost insignificant contribution of these heterocyclic 

volatile compounds to the antioxidant activity of coffee, even at the 100-fold concentrated Fu-

Py-Th model system, which exhibited the highest ABTS and DPPH quenching activity, 

accounting only for up to 3.3% of the overall antioxidant capacity of a filter coffee brew (Figure 

2).  

The most abundant volatile compounds in coffee are aldehydes and ketones and some of them 

are also Maillard reaction products. For those reasons, we decided to test the antioxidant 

activity of two new model systems, one with aldehydes and another with ketones. In terms of 

chromatographic areas (Table 1), 2-methylpropanal, 2-methylbutanal and 3-methylbutanal 

(Strecker degradation products of valine, isoleucine, and leucine), were the most abundant 

aldehydes followed by acetaldehyde and propanal that are formed by pyrolysis of alanine and 

serine, and/or sugar. However, acetaldehyde and propanal were present in significantly higher 

concentrations than Strecker aldehydes in both coffee brews (Table 2). Also, two diones (2,3-

butanedione and 2,3-pentanedione) were selected for quantification and further evaluation of 

their antioxidant activity in a model system. All aldehydes and ketones were present in 

significantly higher amounts in Arabica coffee than in Robusta one, in agreement with other 
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studies (Grosch, 1996). As in the previous model systems, mean concentrations of the selected 

aldehydes and ketones found in Arabica and Robusta coffee were used to prepare the aldehyde 

and the ketone model systems (Table 3). The antioxidant activity of each model system at three 

different concentration levels (coffee, 10-fold and 100-fold) was assessed using the ABTS and 

DPPH radicals quenching assays. Figure 3 shows that, even at the highest concentration, the 

antioxidant activity of the aldehydes and ketones were negligible in comparison to that of the 

coffee brew and also to those of the heterocyclic volatiles model systems.  

Figure 3 

In summary, volatile compounds present in coffee contribute very little to the antioxidant 

capacity of coffee in comparison to other coffee antioxidants, such as phenolics and 

melanoidins, even if other minor non-tested volatiles could also contribute to the overall 

antioxidant capacity. . However, because antioxidants may act by several mechanisms of action 

in both coffee brews and human cells, further studies should be needed to deepen in the role of 

coffee volatiles as antioxidants or in health-properties of coffee. Additionally, the results of the 

present study also indicate that, although some volatile compounds may act as antioxidant in 

high doses, it is necessary to evaluate their capacity at the concentrations in food samples to 

know their actual contribution to the antioxidant capacity. 
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FIGURE CAPTIONS 

Figure 1. SH-GC-MS chromatograms of Arabica (a) and Robusta (b) coffee. For peak 

identification see Table 1. 

Figure 2. Antioxidant activity (ABTS and DPPH) of heterocyclic volatiles model systems and 

filter coffee brew.  

Figure 3. Antioxidant activity (ABTS and DPPH) of aldehydes and ketones model systems and 

filter coffee brew. 
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Table 1. Areas (expressed as Areax10-3) of volatile compounds identified in the headspace of 

Arabica and Robusta coffee. 

Peak nr.b QI c ID d KI e Compounds Arabica Robusta pf 

       

Sulfur compounds      
2 47 B 633 Methanethiol  10639 ± 283 2171 ± 204 .00 
4 62 A 673 Dimethyl sulfide  21413 ± 645 4288 ± 506 .00 
26 94 A 1079 Dimethyl disulfide  3677 ± 402 4126 ± 432 .26 
51 114 A 1432 2-furanmethanethiol (furfurylthiol) 70818 ± 5636 48049 ± 4299 .01 
   Total Sulfur compounds  106547 ± 6972 58634 ± 5068 .00

Aldehydes      
3 43 A 649 Acetaldehyde 86612 ± 9108 18058 ± 1704 .00 
6 58 A 710 Propanal  23479 ± 2675 4132 ± 477 .00 
8 41 A 754 2-methylpropanal  205848 ± 6800 41530 ± 5784 .00 
12 72 B 841 Butanal  5007 ± 223 2133 ± 160 .00 
17 39 A 883 2-methylbutanal  120962 ± 6328 33608 ± 3009 .00 
18 44 A 888 3-methylbutanal  120636 ± 6882 83086 ± 1081 .00 
27 56 A 1086 Hexanal  3683 ± 241 1526 ± 305 .00 
30 84 A 1103 2-methyl-2-butenal  2283 ± 151 1709 ± 155 .01 
   Total Aldehydes  568510 ± 32408 185782 ± 12675 .00

Esters      
5 60 B 682 Formic acid, methyl ester  244615 ± 31288 41513 ± 5307 .00 
10 43 B 791 Acetic acid, methyl ester  22410 ± 1352 9909 ± 1081 .00 
13 43 B 854 Acetic acid, ethyl ester traces 638 ± 315 .02 
16 57 B 876 Propanoic acid, methyl ester 1592 ± 154 884 ± 91 .00 
52 43 B 1484 1-hydroxy-2-propanone acetate  13511 ± 1617 6455 ± 826 .00 
58 57 B 1554 1-hydroxy-2-butanone acetate 819 ± 22 366 ± 54 .00 
   Total Esters  282947 ± 34112 59765 ± 6022 .00

Furans      
7 68 A 724 Furan  37036 ± 3267 28830 ± 5724 .10 
11 82 A 832 2-methylfuran 216408 ± 7745 93177 ± 5589 .00 
14 82 A 862 3-methylfuran  8897 ± 807 3219 ± 225 .00 
20 96 A 934 2,5-dimethylfuran 16239 ± 635 14123 ± 976 .03 
25 94 B 1077 2-vinylfuran  3179 ± 102 1021 ± 159 .00 
34 108 B 1162 2-vinyl-5-methylfuran  4656 ± 271 1449 ± 238 .00 
44 43 A 1284 2-methyltetrahydrofuran-3-one 52497 ± 2324 9506 ± 991 .00 
53 96 A 1491 2-furancarboxaldehyde (furfural) 23557 ± 205 8778 ± 326 .00 
54 81 A 1517 2-furfuryl methyl sulfide  148 ± 30 225 ± 105 .29 
55 81 B 1520 2-furfuryl formate  645 ± 134 234 ± 70 .01 
56 95 A 1537 2-acetylfuran  3726 ± 415 1541 ± 262 .00 
59 81 A 1560 2-furfuryl acetate  2895 ± 291 1633 ± 201 .00 
60 110 A 1606 5-methylfurfural  1189 ± 62 438 ± 29 .00 
61 91 B 1631 2-furfurylfuran  391 ± 71 335 ± 82 .42 
64 98 A 1687 Furfuryl alcohol  11148 ± 997 2964 ± 251 .00 
   Total Furans 382611 ± 17194 167473 ± 15075 .00

Ketones      
9 58 A 763 2-propanone 297481 ± 24952 107777 ± 27101 .00 
15 43 A 869 2-butanone  60667 ± 1544 22195 ± 2774 .00 
21 43 A 965 2,3-butanedione   96526 ± 4428 14796 ± 1501 .00 
23 57 B 1055 3-hexanone  97686 ± 4562 10822 ± 1047 .00 
24 43 A 1060 2,3-pentanedione  66523 ± 3292 6705 ± 1552 .00 
31 69 A 1138 3-penten-2-one 1829 ± 139 709 ± 83 .00 
32 57 B 1144 3,4-hexanedione  3188 ± 252 643 ± 56 .00 
48 43 B 1323 1-hydroxy-2-propanone  230 ± 58 62 ± 10 .01 
   Total Ketones 624130 ± 39029 163709 ± 30821 .00

Alcohols      
19 45 B 917 Ethanol 15764 ± 1482 3636 ± 186 .00 
28 43 A 1105 2-methyl-1-propanol  259 ± 134 516 ± 69 .04 
37 56 B 1221 3-methylbutan-1-ol  1452 ± 223 586 ± 185 .01 
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42 41 B 1265 3-methyl-3-buten-1-ol  657 ± 37 858 ± 119 .05 
47 71 B 1338 3-methyl-2-buten-1-ol  621 ± 117 714 ± 109 .37 
   Total Alcohols  18753 ± 1578 6310 ± 668 .00

Thiophenes      
22 84 A 1023 Thiophene 2324 ± 91 2144 ± 154 .16 
29 97 A 1099 2-methylthiophene  1671 ± 29 1599 ± 135 .42 
   Total Thiophenes  3995 ± 120 3743 ± 289 .24

Pyrroles      
33 81 A 1151 1-methylpyrrole  13884 ± 602 9870 ± 675 .00 
35 80 B 1195 1-ethyl-1H-pyrrole  1072 ± 132 1354 ± 245 .15 
38 94 B 1226 2,5-dimethylpyrrole  561 ± 59 541 ± 82 .75 
57 67 A 1543 1H-pyrrole  2719 ± 187 2686 ± 302 .88 
62 109 A 1662 2-formyl-1-methylpyrrole 1459 ± 139 539 ± 82 .00 
65 81 B 1833 N-furfurylpyrrole 482 ± 26 331 ± 17 .00 
   Total Pyrroles  20177 ± 1145 15321 ± 1403 .01

Pyridines      
36 79 A 1205 Pyridine  3492 ± 123 25078 ± 75 .00 
40 93 B 1240 2-methylpyridine traces nd -- 
   Total Pyridines 3492 ± 123 25078 ± 75 .00

Pyrazines      
39 80 A 1232 Pyrazine  4902 ± 372 8616 ± 318 .00 
45 94 A 1289 2-methylpyrazine 4249 ± 561 20163 ± 1804 .00 
49 108 A 1348 2,5-dimethylpyrazine 1500 ± 126 3413 ± 141 .00 
50 108 B 1373 2,3-dimethylpyrazine  693 ± 81 1514 ± 400 .03 
   Total Pyrazines 11344 ± 807 33706 ± 2663 .00

Thiazoles      
43 85 B 1271 1,3-thiazole  442 ± 26 148 ± 24 .00 
46 99 B 1303 4-methylthiazole  nd 391 ± 108 .00 
   Total Thiazoles  442 ± 26 539 ± 132 .28

Lactones      
63 42 B 1674 γ-butyrolactone  1589 ± 231 1015 ± 126 .02 
   Total Lactones 1589 ± 231 1015 ± 126 .02

Phenolic compounds     
- 94 A 1075 Phenol nd traces -- 
66 109 B - 2-methoxyphenol (guaiacol)  nd 62 ± 57 .13 
   Total phenolic compounds - 62 ± 57 .13

Others      
1 67 A 624 1,3-pentadiene  62095 ± 1585 5672 ± 543 .00 
41 81 B 1252 2-furfuryl methyl ether 2207 ± 157 1247 ± 115 .00 
   Total others 64302 ± 1742 6919 ± 658 .00
       
   Total compounds 2088840±135432 728056 ± 65437 .00
a All values are shown as means ± standard deviations. nd, not detected.b Peak number corresponding to 
chromatograms in Figure 1.c Ion used for the compound quantification. d The reliability of the identification proposal is 
indicated by the following: A, mass spectrum, KI, and retention time according to standards; B, tentative identification by 
comparing mass spectrum with Wiley mass spectral database and retention indices with literature data e Kovats index 
calculated for the HP-Wax capillary column. fp-value between coffee samples obtained by Student’s t-test. 
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Table 2. Concentration of antioxidant volatile compounds in Arabica and Robusta coffee. All 

values are shown as mean ± standard deviation (n=3). 

  Coffee (µg/mL)  

 Compounds   Arabica   Robusta pa 

Furans  
 Furan   0.23 ± 0.02   0.19 ± 0.04 .20 
 2-methylfuran   1.25 ± 0.06   0.56 ± 0.04 .00 
 2,5-dimethylfurane   0.24 ± 0.01   0.22 ± 0.01 .07 
 2-methyl-tetrahydrofuran-3-one 95.72 ± 5.93 18.09 ± 2.53 .00 
 Furfural 24.23 ± 0.28 10.04 ± 0.44 .00 
 5-methylfurfural   7.05 ± 0.53   2.50 ± 0.25 .00 
 2-furfurylacetate   2.93 ± 0.32   1.95 ± 0.22 .01 
Pyrroles  
 1-methylpyrrole   0.44 ± 0.03   0.30 ± 0.03 .00 
 Pyrrole   1.17 ± 0.10   1.15 ± 0.16 .90 
 2-formyl-1-methyl-pyrrole   1.37 ± 0.17   0.56 ± 0.10 .00 
Thiophenes  
 Thiophene   0.10 ± 0.00   0.10 ± 0.00 .00 
 2-methylthiophene   0.02 ± 0.00   0.02 ± 0.00 .00 
Aldehydes  
 Acetaldehyde 95.66 ± 10.03 20.48 ± 1.90 .00 
 Propanal 92.64 ± 10.56 18.52 ± 2.13 .00 
 2-methylpropanal 16.91 ± 0.51   4.03 ± 0.56 .00 
 2-methylbutanal   3.50 ± 0.18   0.82 ± 0.07 .00 
 3-methylbutanal   4.82 ± 0.17   3.22 ± 0.04 .00 
Ketones  
 2,3-butanedione 62.48 ± 2.88   8.88 ± 0.92 .00 
 2,3-pentanedione 32.02 ± 1.60   3.85 ± 0.85 .00 

ap-value between coffee samples obtained by Student’s t-test. 
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Table 3. Concentrations of volatile compounds present in each model systems 

  
Model system

(µg/mL) 

 
Compounds 
 

Fu Py Th Fu-Py-Th Ald Ke 

Furans (Fu) 
 Furan 0.20   0.20   
 2-methylfuran 0.90   0.90   
 2,5-dimethylfuran 0.20   0.20   
 2-methyl-tetrahydrofuran-3-one 55.00   55.00   
 Furfural 17.00   17.00   
 5-methylfurfural 5.00   5.00   
 2-furfurylacetate 2.50   2.50   

Pyrroles (Py) 
 1-methylpyrrole  0.35  0.35   
 Pyrrole  1.00  1.00   
 2-formyl-1-methyl-pyrrole  1.00  1.00   

Thiophenes (Th) 
 Thiophene   0.10 0.10   
 2-methylthiophene   0.02 0.02   

Aldehydes (Ald) 
 Acetaldehyde     58.00  
 Propanal     55.50  
 2-methylpropanal     10.50  
 2-methylbutanal     2.15  
 3-methylbutanal     4.00  

Ketones (Ke) 
 2,3-butanedione      35.00 
 2,3-pentanedione      18.00 

 


