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ABSTRACT   1 

Background: Physical exercise has been reported to increase the bioavailability of 2 

citrus flavanones. 3 

Objective: To investigate the bioavailability of orange juice (OJ) (poly)phenols in 4 

endurance-trained men before and after cessation of training for 7 days. 5 

Design: Ten fit endurance-trained males, with a maximal oxygen consumption of 58.2 6 

± 5.3 mL/kg/min, followed a low (poly)phenol diet for 2 d before drinking 500 mL of 7 

OJ, containing 398 µmol of (poly)phenols of which 330 µmol were flavanones. After the 8 

volunteers stopped training for 7 days the feeding study was repeated. Urine samples 9 

were collected 12 h pre- and 24 h post-OJ orange consumption. Bioavailability was 10 

assessed by the quantitative analysis of urinary flavanone metabolites and 11 

(poly)phenol catabolites using HPLC-HR-MS. 12 

Results: While training, 0-24 h urinary excretion of flavanone metabolites, mainly 13 

hesperetin-3-O-glucuronide, hesperetin-3´-sulfate, naringenin-4´-O-glucuronide, 14 

naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This 15 

increased significantly to 5.2% when OJ was consumed after the volunteers stopped 16 

training for 7 days. Overall, this trend, although not significant, was also observed with 17 

OJ-derived colonic catabolites which after supplementation in the trained state were 18 

excreted in amounts equivalent to 51% of intake compared to 59% after cessation of 19 

training.  However, urinary excretion of three colonic catabolites of bacterial origin, 20 

most notably, 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid, did increase 21 

significantly when OJ was consumed post- compared to pre-cessation of training. Data 22 

were also obtained on inter-individual variations in flavanone bioavailability. 23 
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Conclusion: A 7-day cessation of endurance training enhanced, rather than reduced, 24 

the bioavailability of OJ flavanones.  The biological significance of these differences 25 

and, whether or not they extend to the bioavailability of other dietary (poly)phenols, 26 

remains to be determined. Hesperetin-3-O-glucuronide and the colonic microbiota-27 

derived catabolite 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid are key 28 

biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other 29 

citrus products. 30 

 31 

Key words: orange juice flavanones, endurance-trained athletes, cessation of training, 32 

urinary metabolites and catabolites, biomarkers of hesperetin intake 33 
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INTRODUCTION  34 

Citrus fruits and their juices are the principal dietary source of flavanones (1). Population-35 

based data have linked increased citrus fruit consumption to a reduced risk of stroke (2) and 36 

some types of cancer (3, 4). There is evidence that this is due to a high flavanones intake (5, 6). 37 

Orange juice (OJ) is one of the main dietary sources of flavanones with the major components 38 

being hesperetin-7-O-rutinoside (hesperidin) and naringenin-7-O-rutinoside (narirutin) (1).  39 

Other studies have found that regular consumption of OJ brings about an improvement in 40 

vascular function (7, 8), inhibits oxidative stress and inflammatory responses (9) and has a 41 

positive effect on metabolic, oxidative and inflammatory biomarkers of health status in normal 42 

and overweight subjects (10). Furthermore, it has been reported that daily consumption of OJ 43 

containing at least 300 mg (~500 µmol) of flavanones for a period of 12 weeks, enhanced the 44 

antioxidant defence system, protected against DNA damage and lipid peroxidation, and reduced 45 

blood pressure in overweight and obese adults (11).  In addition, administration of a flavanone-46 

rich aronia-citrus juice to triathlon athletes for a period of almost 21 weeks decreased 47 

isoprostane markers of oxidative stress (12). 48 

An understanding of the metabolic fate of flavanones in the body is a prerequisite for 49 

elucidating the mode of action underlying the protective effects of OJ and citrus consumption in 50 

general. Ingested flavanones begin to be absorbed as phase II metabolites in the small intestine 51 

but ~70% of ingested flavanones reach the large intestine (13) where, as well as continuing to be 52 

absorbed as phase II metabolites, they are subjected to ring fission by the action of the resident 53 

microbiota and broken down to phenolic catabolites (14-16) which enter the circulatory system, 54 

with a portion undergoing phase II metabolism in coloncytes and/or hepatocytes prior to renal 55 

excretion (17).  In a recent OJ feeding study, in addition to  a ~16% urinary recovery of 56 

hesperetin and naringenin metabolites, the quantity of colon-derived phenolic compounds 57 



 6 

detected in urine was equivalent to  ~88% of flavanone intake, demonstrating that flavanone 58 

bioavailability is much higher than previously perceived (18). 59 

In the context of physical training status and flavanone bioavailability, it has been reported 60 

that urinary excretion of flavanone metabolites by triathletes, after drinking an aronia (5%)-61 

citrus (95%) juice, was ~ 5-fold higher than that of more sedentary volunteers (19). Exercise 62 

training, induces several physiological changes including reduced whole bowel transit time (20) 63 

and enhanced muscle blood flow (21), which would be expected to reduce rather than increase 64 

flavanone bioavailability.  The impact of exercise on flavanone bioavailability is potentially 65 

complex and requires further investigation.  Cessation of training by physically active individuals 66 

provides a useful model to study the physiological effects of exercise (22), and the objective of 67 

this study was to determine the impact of a 7-day detraining period on the bioavailability of OJ 68 

(poly)phenols in endurance-trained male athletes.  69 

 70 

SUBJECTS AND METHODS 71 

Chemicals and materials 72 

The chemicals used in the study and their sources were as described previously by Pereira-73 

Caro et al. (17).  Synthetic urine (Negative Urine Control) was purchased from Sigma-Aldrich, 74 

Madrid, Spain). 75 

Participants 76 

Eligible participants of this study were endurance trained men with body mass index (BMI) 77 

< 25 kg/m2 and maximal oxygen consumption (V̇O2max) ≥ 51.0 ml/kg/min. They were recruited 78 

by advertisements and word of mouth in the campus of the University of Glasgow and in other 79 

public places. Participants were non-smokers, with stable weight for one month prior to study 80 
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enrolment, and were not on any medication, nutritional supplement or special diet. Before 81 

enrolling in the study, participants underwent a detailed health screen regarding participant’s 82 

health to exclude chronic illness, eating disorders and history of gastrointestinal diseases which 83 

could interfere with the results of the study. All participants gave written informed consent. The 84 

Ethics Committee of the College of Medical, Veterinary and Life Sciences, Glasgow University 85 

approved the study which was registered at ClinicalTrials.gov (NCT02627547).  86 

 87 

Screening procedures and cardiorespiratory fitness assessment 88 

During the screening sessions V̇O2max tests were carried out to ensure that participants 89 

had a high level of cardiorespiratory fitness for their age group and, thus, could be classified as 90 

endurance-trained athletes.  A V̇O2max ≥ 51.0 ml/kg/min, which refers to fitness excellence (23), 91 

was considered as the main inclusion criterion.  Prior to this test participants completed Health 92 

Screening and Physical Activity Readiness Questionnaires and had their height (Seca, Leicester, 93 

UK), weight, body fat (TBF-300, TANITA, Cranlea, UK) and BMI calculated. 94 

The V̇O2max assessment involved a continuous incremental exercise test to volitional 95 

exhaustion and was performed at 20-21°C with a relative humidity of 30-40% (24).  The test was 96 

conducted on either a motorized treadmill (PPS Med, Woodway, Germany) or a cycle-ergometer 97 

(HP Cosmos Cyclus 2 Record-trainer, Nussdorf-Traunstein, Germany), depending on the 98 

participant’s type of training.  Preceding the test, participants were fitted with a heart rate 99 

monitor (Polar Sports Tester, Polar Electro Oy, Kempele, Finland) and were advised to warm up. 100 

During the treadmill test the participants began with a warm up period of 6 min at a speed of 8 101 

km/h. After the warm up phase, running speed was gradually increased by 1 km/h every minute 102 

until participants reached exhaustion.  During the cycle ergometer test participants were asked 103 
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to choose a familiar and comfortable pedalling rate greater than 60 rpm and to maintain it 104 

throughout the test. The 4 min warm up period at 100 W was followed by gradual increases in 105 

power output of 25 W every min until 200 W was reached at which point power output was 106 

increased by 25 W every 2 min until participants reached volitional exhaustion. During tests 107 

collection of expired gas was initiated when a significant increase in ventilation and heart rate 108 

was achieved; our experience and judgement was used to determine when the subject would 109 

reach exhaustion. Verbal encouragement was given to participants throughout the test. 110 

Exhaustion was defined as the time at which the subjects were no longer able to maintain the 111 

prescribed running speed or pedalling rate. Expired gas samples were collected using the 112 

Douglas bag technique (25) and heart rate and rating of perceived exertion (26) were recorded 113 

during 2-3 final stages of the test. Expired gas samples were analysed for O2% and CO2% (4100 114 

Gas Purity Analyzer, Servomex, UK) volume (Dry gas meter, Harvard, Kent, UK), and 115 

temperature. Barometric pressure was measured using a standard mercury barometer. Oxygen 116 

consumption (VO2) values were derived using Haldane transformation (27). The V̇O2 value 117 

obtained during the last expired gas collection was taken as the V̇O2max value.  118 

 119 

Study design  120 

Each subject participated in two 24 h OJ feeding trials: one during a period of normal 121 

training, the other immediately following 1 week of an absence of training.  Participants were 122 

requested to maintain their normal training program during the week leading up to the first OJ 123 

feeding trial (trained state), and to ensure that they trained on the preceding day.  They were 124 

asked to refrain from any training prior to a second OJ feeding trial (detrained state).  125 

Participants weighed and recorded their dietary intake and were asked to follow a diet low in 126 
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(poly)phenolic compounds by avoiding fruits and vegetables, chocolate, nuts, high-fibre 127 

products, and beverages such as tea, coffee and fruit juices, as well as to abstain from consuming 128 

alcohol, for the 2 days prior to their first OJ feeding trial in the trained state and to replicate their 129 

diet during the 2 days prior to the feeding trial in the detrained state.  130 

On the morning of the OJ feeding trials, participants reported to the metabolic suite 131 

between 0800 and 0900 h after a 12-h fast and brought their 12 h excreted overnight urine 132 

sample. Height, body mass and body fat were measured.  Participants then consumed 500 mL of 133 

OJ (Tropicana “With Bits”), homogeneity of samples was ensured by mixing and freezing in bulk 134 

and, except for water intake to maintain adequate levels of hydration, no other food or drink was 135 

allowed for the next 4 h. Four hours after beginning of the trial participants were provided with a 136 

white roll with butter.  After 8 h, participants were provided with a standard low (poly)phenol 137 

meal (a buttered white roll with ham and cheese and potato chips/crisps) after which they left 138 

the laboratory and returned home to sleep at home.  They were instructed to continue the low 139 

(poly)phenol diet that evening and return to the laboratory the next morning to  provide  140 

overnight urine. During the feeding trials participants collected all urine excreted over the 141 

following time periods: 0-5, 5-8, 8-10 and 10-24 h.  Urine was collected into sealable flasks kept 142 

on ice.  The total volume of each urine fraction was recorded and 2 mL aliquots were stored at –143 

80°C prior to analysis.  144 

 145 

Analysis of orange juice and urine by HPLC-HR-MS detection 146 

Urine samples and (poly)phenols in OJ were analysed using the procedures described by 147 

Pereira-Caro et al. (17). Briefly, aliquots of urine and OJ were analysed using a Dionex Ultimate 148 

3000 RS UHPLC system comprising a UHPLC pump, a PDA detector scanning from 200 to 600 149 
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nm, and an autosampler operating at 4°C (Thermo Scientific, San Jose, CA). Reverse phase 150 

separations were carried out using a 150 x 4.6 mm i.d. 5 µm 100Å C18 Kinetex column 151 

(Phenomenex, Macclesfield, UK) maintained at 40°C and eluted at a flow rate of 1.0 mL/min with 152 

a 45 min gradient of 3-50% of 0.1% acidic methanol in 0.1% aqueous formic acid. After passing 153 

through the flow cell of the PDA detector the column eluate was split and 0.2 mL/min directed to 154 

an Exactive™ Orbitrap mass spectrometer fitted with a heated electrospray ionization probe 155 

(Thermo Scientific) operating in negative ionization mode. Analyses were based on scanning 156 

from 100 to 1000 m/z, with in-source collision-induced dissociation at 25.0 eV. The capillary 157 

temperature was 300°C, the heater temperature was 150°C, the sheath gas and the auxillary gas 158 

flow rate were both 20 units, the sweep gas was 3 and the spray voltage was 3.00 kV.  Data 159 

acquisition and processing were carried out using Xcalibur 3.0 software. 160 

Identification and quantification of OJ (poly)phenols and their urinary metabolites was 161 

achieved as described previously (17). Analysis of flavanone metabolites and phenolic 162 

catabolites in urine was carried out by selecting the theoretical exact mass of the molecular ion 163 

by reference to 0.1-750 ng standard curves. A linear response was obtained for all the available 164 

standards, as checked by linear regression analysis (R2>0.999). Limits of detection (ranging from 165 

0.02 to 0.09 ng), limits of quantification (0.08-0.5 ng) and precision of the assay (as the 166 

coefficient of intra-assay variation, ranging from 1.8 to 4.9%) were considered acceptable 167 

allowing the quantification of metabolites. All reference compounds used for calibration curves 168 

were made up in synthetic urine. In absence of reference compounds, metabolites were 169 

quantified by reference to the calibration curve of a closely related parent compound (17).  170 

 171 

Statistical analysis 172 
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Data were assessed for normality of distribution using Shapiro-Wilk test and revealed that 173 

data was not normally distributed. The comparisons of responses measured at different time 174 

points were made by Friedman’s ANOVA followed by Wilcoxon post-hoc signed-rank test. 175 

Wilcoxon post-hoc signed-rank test was used to determine whether differences in total and 176 

relative excretion of flavanone metabolites and phenolic catabolites were significant between the 177 

trained and detrained states.  Significance was accepted at the P<0.05 level and data are 178 

presented as mean values ± SE unless stated otherwise.  Statistical analyses were performed 179 

using Statistica (version 10.0; StatSoft, Inc., Tulsa, OK) and Minitab (version 17.3.1; Minitab, Inc., 180 

State College, PA). 181 

Standard deviations for mean concentration differences between trained and detrained 182 

states were 0.6 µmol, 3.8 µmol and 4.7 µmol for total naringenin, total hespertin and total 183 

flavonones metabolites respectively. Thus, with 10 participants, a minimum detected differences 184 

of 0.6 µmol for total naringenin, 2.6 µmol for total hespertin, and 3.4 µmol for total flavonone 185 

metabolites at specified power of 80% were significant at the 5% level. 186 

 187 
 188 

RESULTS 189 

Participants 190 

Of 16 eligible participants, 3 individuals declined to take part in the study because of time 191 

commitments, and thus 13 participants were enrolled (see Supplemental Figure 1 under 192 

“Supplemental data” in the online issue). Of these 13 participants, one participant dropout before 193 

beginning the study due to illness. Of the 12 participants who completed study, two were 194 

excluded, as prior to the second feeding trial  they did not follow low (poly)phenol diet. Thus, the 195 

study was completed by 10 endurance-trained men with a height of 178 ± 1.9 cm, a BMI of 21.7 ± 196 
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0.6 kg/m2, percentage body fat of 7.5 ± 0.9% and a V̇O2max  of 58.2 ± 1.7 mL/kg/min (mean 197 

values ± SE).  The volunteers had been training on a routine basis for the past 4-12 years and 198 

typically performed 5-10 h of endurance training per week. They competed regularly in running 199 

events, such as marathons and half-marathons, at regional and national levels.  200 

 201 

Identification and quantification of (poly)phenols in orange juice   202 

The 500 mL of OJ consumed by the volunteers in both trials contained hesperetin-7-O-203 

rutinoside (246 µmol), hesperetin-7-O-rutinoside-3-O-glucoside (4 µmol), naringenin-7-O-204 

rutinoside (62 µmol), 4’-O-methyl-naringenin-7-O-rutinoside (14 µmol), eriodictyol-7-O-205 

rutinoside (4 µmol), apigenin-6,8-C-diglucoside (35 µmol), ferulic acid-4-O-glucoside (16 µmol), 206 

coumaric acid-4-glucoside (11 µmol), a sinapic acid-O-hexoside (6 µmol) and the  amine p-207 

sympatol (6 µmol) (Table 1). Thus, in total, the ingested juice contained 398 µmol of 208 

(poly)phenols of which 330 µmol  were flavanones. The structures of the identified OJ 209 

component are presented in our earlier publication (17). 210 

 211 

Excretion of flavanone metabolites in urine  212 

As anticipated, no flavanone metabolites were detected in 0-24 h baseline urine collected 213 

prior to the consumption of 500 mL of OJ.  Quantitative data on the urinary excretion of 214 

flavanone metabolites 0-5, 5-8, 8-10, 10-24 h after OJ intake by the 10 endurance-trained 215 

volunteers in both trained and detrained conditions are summarised in Figure 1. Hesperetin 216 

metabolites were excreted in urine in higher quantities than naringenin and eriodictyol 217 

metabolites. The 0-24 h excretion of hesperetin metabolites, and as a consequence the overall 218 

level of flavanones metabolites, was significantly higher after a 7-day break in training than the 219 
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quantities excreted during training. This was due to increased amounts of hesperetin 220 

metabolites excreted 5-8 h after OJ intake (6.1 ± 3.0 μmol compared to 2.5 ± 1.1 μmol). There 221 

were no statistically significant differences in excretion of naringenin and eriodictyol metabolites 222 

by subjects who consumed OJ in the trained and detrained condition (Figure 1).  223 

The basis of the HPLC-HR-MS-based identifications of 19 flavanone metabolites was outlined 224 

in an earlier publication (17). The structures of the fully identified metabolites are illustrated in 225 

Figure 2. Quantitative estimates of the levels of the individual metabolites excreted 0-5, 5-8, 8-226 

10, 10-24 and 0-24 h after OJ consumption by the trained and detrained volunteers are 227 

presented in Supplemental Table 1 in the on-line Supplemental Information. The 0-24 h data are 228 

summarised in Table 2 which shows that urinary excretion of total flavanone metabolites was 229 

significantly higher in volunteers who consumed OJ after the detraining period compared to the 230 

trained trial (13.8 ± 8.2 μmol vs 17.2 ± 4.8 μmol). This was due to the significant increase in the 231 

levels of the main metabolites hesperetin-3-O-glucuronide, hesperetin-7-O-glucuronide, 232 

hesperetin-3´-O-sulfate and a hesperetin-O-glucosyl-sulfate.  There was no significant difference 233 

in excretion, in the trained and detrained states, of the lower quantities of naringenin and 234 

eriodictyl metabolites. The main naringenin metabolites were the 4- and 7-O-glucuronides while 235 

trace amounts of an eriodictyol-sulfate and an eriodictyol-O-glucuronyl-sulfate were also 236 

excreted (Table 2).   237 

The overall 0-24 h excretion in the trained and detrained states expressed as a percentage 238 

of intake was, respectively, 3.8% and 4.8% for hesperetin metabolites, 5.4% and 6.2% for 239 

naringenin metabolites and 5.0% and 5.0% for metabolites of eriodictyol metabolites (Table 2). 240 

Overall flavanones metabolite excretion was, respectively, 4.2% and 5.2% of intake for the 241 

trained and detrained stages of the study. These values are significantly different (Table 2). 242 



 14 

 243 

Urinary excretion of phenolic and aromatic catabolites  244 

Previously, 65 phenolic and aromatic catabolites were identified in urine after OJ 245 

consumption by the trained and detrained volunteers (17). Supplemental Table 2 contains 246 

estimates of the 33 phenolic compounds present in quantifiable amounts that were excreted in 247 

urine 0-5 h, 5-8 h, 8-10 h and 10-24 h following OJ intake by the two groups of volunteers. For 248 

the structures of these compounds see Supplemental Figure 2.  249 

The various phenolics are not necessarily exclusively the products of colonic microbiota-250 

mediated degradation of the OJ (poly)phenols which reached the distal gastrointestinal tract 251 

(GIT).  A portion of the catabolites in Supplemental Table 2 are also products of endogenous 252 

pathways unrelated to OJ intake (28). Hence, they were present to varying degrees in the 12 h 253 

overnight urine collected prior to OJ intake after volunteers had been on a low (poly)phenol diet 254 

low for 36-48 h.  These 0-12 h baseline values were, therefore, used on a per hour basis to 255 

subtract from the total amounts of phenolic and aromatic catabolites excreted in urine 0-24 h 256 

post-supplementation in order to assess the impact of OJ consumption. The data are presented in 257 

Table 3. A total of 202 ± 54 µmol were excreted over the 24 h period by the trained group, which 258 

corresponds to 51% of the 398 µmol (poly)phenol intake, while overall phenolic catabolite 259 

excretion in the detrained condition increased, but not significantly, to 236 ± 74 µmol, which is a 260 

59% recovery.  261 

Excretion of some of the 33 individual phenolic compounds did increase significantly after 262 

OJ intake by both groups (Table 3). Three of these catabolites, namely 3-(3´-hydroxy-4´-263 

methoxyphenyl)hydracrylic acid, a methoxyphenylacetic acid-O-glucuronide and 3´-264 

hydroxyphenylacetic acid, were excreted in amounts after cessation of training that were 265 
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significantly higher than excretion prior to stopping training.  These increases were relatively 266 

minor compared to the overall excretion of phenolic catabolites. However, the increased 267 

excretion of 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid, by both groups after OJ intake, is 268 

of interest as it has been proposed as a biomarker of hesperetin intake (14, 18).  269 

 270 

Volunteer variations in excretion of flavanones metabolites and phenolic catabolites  271 

Table 4 summarises data obtained with the individual volunteers on the total 0-24 h urinary 272 

recovery of metabolites from a 330 µmol intake of flavanones and the phenolic catabolite 273 

recovery from the ingested 398 µmol of (poly)phenolics. Detraining significantly increased mean 274 

flavanone metabolite excretion from 13.8 µmol to 17.2 µmol, with 9 of the 10 subjects showing 275 

increased excretion with detraining. Detraining increased mean phenolic catabolite excretion 276 

from 202 µmol to 236 µmol but this increase was not statistically significant although 8 of the 277 

individual volunteers did show an increase (Table 4). 278 

There was noticeable variation between the volunteers which is reflected in the range of 279 

the amounts of metabolites and catabolites shown in Table 4. For instance, in the trained 280 

condition volunteers 1, 2 and 3 excreted 4.8-4.9 µmol of flavanones metabolites while volunteer 281 

9 excreted 34 µmol and subject 10, 42 µmol. There was, however, a consistency in that low 282 

excreters in the trained condition were also low excreters when they stopped training for 7 days 283 

and likewise with the high excreters. For instance, volunteer 1, 2 and 3 excreted 4.8-4.9 µmol of 284 

flavanone metabolites when training and 6.7-7.5 µmol after stopping training. Subject 10 285 

excreted 42 µmol of metabolites in the trained condition and 50 µmol after stopping training 286 

(Table 4).  The trend was less evident with the higher level excretion of the phenolic catabolites.  287 

Four of 5 subjects who excreted >200 µmol of catabolites also excreted >200 µmol after stopping 288 
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training for 7 days (volunteers 1, 2, 5 and 6), the exception being volunteers 7. The one volunteer 289 

who excreted <200 µmol of catabolites while training also did so after cessation of training 290 

(volunteer 10) (Table 4). 291 

 292 

DISCUSSION 293 

In this study with endurance trained athletes flavanone bioavailability was assessed on the 294 

basis of urinary excretion after OJ intake. Although plasma profiles can supply useful 295 

information, unlike cumulative urinary excretion, they are not an accurate quantitative guide of 296 

absorption because the presence of metabolites and catabolites in the circulatory system is 297 

transient as they are rapidly removed from the bloodstream via renal excretion (18, 28, 29).  298 

Our previous OJ feeding study showed that excretion of hesperetin and naringenin 299 

metabolites 0-24 h after OJ consumption corresponded to 16% intake, while excretion of 300 

phenolic catabolites was equivalent to ~88% of (poly)phenol intake (18).  In the current 301 

investigation, with a very different population of endurance trained male athletes, the ingestion 302 

of OJ during training resulted in a lower level of excretion with 4.2% recovery of flavanone 303 

metabolites in urine collected 0-24 h after intake (Table 2). Excretion of phenolic catabolites 304 

during training was also reduced, but not to the same degree, with 51% of (poly)phenol intake 305 

appearing in urine (Tables 3 and 4).  Bioavailability was increased significantly, but none-the-306 

less marginally, when the athletes stopped training for 7 days at which point OJ consumption 307 

resulted in a 5.2% excretion of flavanone phase II metabolites (Table 2). The overall excretion of 308 

phenolic catabolites was substantially higher than that of the flavanone metabolites, and 309 

increased from 51% to 59% of intake after cessation of training, but the increase is not 310 

statistically different (Table 4).  311 
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The data in Table 2 indicates that hesperetin-3’-O-glucuronide, the urinary main flavanone 312 

metabolite, is a good biomarker of hesperetin and OJ intake while the information in Table 3 313 

confirms the earlier suggestion (14, 18) that 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid, 314 

because of its 3-hydroxy-4-methoxy structure, is also a key indicator of hesperetin 315 

consumption. Many other phenolic compounds were also excreted in increased quantities after 316 

OJ consumption, most notably 4´-hydroxyphenylacetic acid (Table 3). However, most, if not all, 317 

are colonic catabolites of other dietary (poly)phenols having been detected in feeding studies 318 

with a number of products or following in vitro fecal incubations (3041) and, thus, are not  319 

specific indicators of flavanone intake. 320 

The markedly lower levels of flavanone metabolite excretion by the endurance trained 321 

volunteers compared to our previous study with less active subjects (4.2% vs 16% of intake) 322 

could be due to a more rapid rate of gastrointestinal transport in the athletic subjects (20). 323 

Detailed analysis of plasma pharmacokinetic profiles of (poly)phenol metabolites and catabolites 324 

obtained with the current study will be the topic of a separate publication. However, the profiles 325 

for hesperetin-7-O-glucuronide and ferulic acid-4'–sulfate shown in Figure 3 in the 326 

Supplementary Information indicate that cessation of training for 7 days had no discernible 327 

impact on gastrointestinal transport of flavanones, unlike co-ingestion of OJ with yogurt 328 

demonstrated in an earlier study (42). 329 

Endurance training has been reported to bring about changes in the colonic microbiota 330 

(43) which, arguably, could limit microbiota-mediated cleavage of the rutinoside moiety of 331 

flavanone glycosides and so reduce the amount of the hesperetin and naringenin released for 332 

absorption in the distal GIT.  In addition, training results in adverse physiologic adaptations in 333 

the gut (44) and enhances muscle blood flow up to 12-16 h after the last exercise session (21).  334 
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These events could inhibit gut function and further reduce the absorption of the flavanone 335 

aglycones.  While stopping training for 7 days significantly increased flavanone metabolite 336 

excretion from 4.2% to 5.2% of intake (Table 2) a longer period without training would appear 337 

to be required to attain the 16% excretion of flavanones metabolites observed when OJ was 338 

consumed by volunteers who were not endurance athletes (18).  339 

The main flavanone metabolites, hesperetin-3'-O-glucuronide, hesperetin-7-O-glucuronide, 340 

hesperetin-3'-sulfate (Table 2), are absorbed principally in the colon after microbiota-mediated 341 

cleavage of the rutinose moiety of hesperetin-7-O-rutinoside (13, 45). These metabolites, at 342 

concentrations that can be achieved in vivo, have been reported to exert anti-atherogenic effects, 343 

via ameliorating monocyte adhesion to endothelial cells and modulating the expression of 344 

proteins associated with inflammation and supressing induced inflammation (46, 47). They also 345 

efficiently reduce the TNF-α-induced migration of human aortic endothelial cells. This was 346 

accompanyed and mediated by significant decreases in PAI-1 levels, a thrombogenic protein, 347 

which is involved in a wide range of cardiovascular diseases, as well as in the cell migration (48). 348 

The importance of the colonic microbiota is further emphasized by the fact that a number of the 349 

colon-derived phenolic catabolites which increased significantly after OJ intake (Table 3) also 350 

exert potential protective effects in ex vivo and in vitro test systems at physiological doses (49-351 

52).  352 

There are substantial inter-individual differences with, for instance, excretion of flavanones 353 

metabolites after cessation of training ranging from 6.2 µmol to 50 µmol (Table 4). Intra-354 

individual differences, however, were much smaller with high excreters producing relatively 355 

high amounts of metabolites in both the trained state and after cessation of training (volunteers 356 

9 and 10) while low excreters maintained this condition after stopping training (volunteers 1-3). 357 

The inter-individual variation in the absorption of OJ flavanones (53, 54), and in the 358 
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bioavailability of dietary (poly)phenols in general, is an area of increasing interest because 359 

information of variations in the capacity to metabolize these compounds may lead to a better 360 

understanding of the beneficial effects of plant bioactive compounds against diseases, 361 

particularly, their role in healthy ageing and cardiometabolic risk reduction (55).  362 

The results of the current study contradict the findings of Medina et al. (19) who reported 363 

that after consumption of an Aronia-citrus juice, the quantity of flavanone metabolites excreted 364 

in urine by triathletes was 5-fold higher than excretion by control, more sedentary volunteers. 365 

The two groups of volunteers consumed a juice containing 80 mg of flavanones which, assuming 366 

they were mainly hesperetin- and naringenin–O-rutinosides, equates with a dose of ~130 µmol. 367 

The aglycones hesperetin and naringenin, released by enzyme hydrolysis of urine prior to 368 

analysis, were quantified by HPLC-MS. The 0-24 h post-consumption excretion was estimated to 369 

be ~0.3% of intake by the control group and ~1.3% by the triathletes.  The excretion by the 370 

control group is very low compared with 16% obtained in our more recent acute feeding study 371 

with OJ (18). Although hydrolysis of flavonoid glucuronide and sulfate metabolites by mollusc 372 

enzymes, which have inconsistent titre, does not result in complete cleavage, especially of 373 

sulfates, and as a consequence under-estimates metabolite levels (56, 57), the efficiency of this 374 

step is unlikely to have been so low as to account for estimates of urinary excretion being ~50-375 

fold lower than those detected by Pereira-Caro et al. (18, 58) and also markedly lower than 376 

flavanone excretion reported by other investigators (40, 53, 54, 59, 60). 377 

 378 

CONCLUSIONS 379 

Short duration cessation of physical training slightly, but significantly, enhanced the 380 

bioavailability of OJ polyphenols due to increased excretion of hesperetin metabolites. When 381 
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compared with data obtained in previous OJ feeding studies (18) the bioavailability of OJ 382 

flavanones in endurance trained male athletes was lower than in less active individuals.  The 383 

more substantial excretion of colon-derived phenolic catabolites after OJ intake was not 384 

statistically different in the trained and detrained states but was lower than observed in the 385 

previous study with volunteers who were not involved in a training programme.  To what extent 386 

long-term participation in endurance training and reduced flavanone bioavailability, and 387 

potentially lowered bioavailability of other dietary (poly)phenolics, impacts on health and ageing 388 

remains to be determined. Hesperetin-3’-O-glucuronide and 3-(3´-hydroxy-4´-389 

methoxyphenyl)hydracrylic acid are urinary biomarkers of the consumption of hesperetin-390 

containing OJ and other citrus products. 391 
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TABLE 1  

Quantities of (poly)phenols in 500 mL of orange juice1  

Orange Juice (Poly)phenols µmol in 500 mL  

Hesperetin-7-O-rutinoside 246 

Hesperetin-7-O-rutinoside-3´-O-glucoside 4 

Naringenin-7-O-rutinoside 62 

4´-O-methyl-naringenin-7-O-rutinoside 14 

Eriodictyol-7-O-rutinoside 4 

Total flavanones 330 

Apigenin-6,8-C-diglucoside 35 

Total flavonoids 35 

Ferulic acid-4´-O-glucoside 16 

Coumaric acid-4´-glucoside 11 

Sinapic acid-O-hexoside 6 

Total phenolic acids 33 

p-Sympatol 6 

Total amines 6 

Total (Poly)phenols 398 

 
1 Data expressed as µmol, SEM <5% of the mean in all instances (n = 3). 
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TABLE 2 

Urinary excretion of flavanone metabolites 0-24 h after the ingestion of 500 mL of orange juice in 

trained and detrained states 1-3 

Naringenin metabolites Trained Detrained 

Naringenin-4´,7-O-diglucuronide 0.02 ± 0.01 0.02 ± 0.01 

Naringenin-5,7-O-diglucuronide 0.10 ± 0.09 0.03 ± 0.02 

Naringenin-4´,5-O-diglucuronide 0.09 ± 0.06 0.04 ± 0.03 

Naringenin-O-glucuronyl-sulfate 0.02 ± 0.01 0.02 ± 0.01 

Naringenin-4´-O-glucuronide 1.8 ± 1.0 2.1 ± 1.1 

Naringenin-7-O-glucuronide 2.0 ± 1.0 2.3 ± 1.1 

Naringenin-4´-sulfate 0.1 ± 0.1 0.2 ± 0.1 

Total naringenin metabolites 4.1 ± 2.2 (5.4%) 4.7 ± 2.4 (6.2%) 

   
Hesperetin metabolites Trained Detrained 

Hesperetin-3´,7-O-diglucuronide 0.02 ± 0.02 0.02 ± 0.02 

Hesperetin-5,7-O-diglucuronide 0.3 ± 0.3 0.3 ± 0.3 

Hesperetin-3´,5-O-diglucuronide 0.3 ± 0.2 0.3 ± 0.2 

Hesperetin-5-O-glucuronide 0.06 ± 0.03 0.06 ± 0.03 

Hesperetin-7-O-glucuronide 0.8 ± 0.6 1.0 ± 0.63 

Hesperetin-3´-O-glucuronide 6.0 ± 3.6 7.6 ± 4.43 

Hesperetin-sulfate 0.2 ± 0.1 0.2 ± 0.2 

Hesperetin-3´-O-sulfate 1.7 ± 1.0 2.4 ± 1.33 

Hesperetin-O-glucosyl-sulfate 0.08 ± 0.04 0.11 ± 0.063 

Total hesperetin metabolites 9.4 ± 5.8 (3.8%) 12.0 ± 7.0 (4.8 %)3 
   
Eriodictyol metabolites Trained Detrained 

Eriodictyol-sulfate 0.1 ± 0.1 0.1 ± 0.1 

Eriodictyol-O-glucuronyl-sulfate  0.1 ± 0.1 0.08 ± 0.09 

Total eriodictyol metabolites 0.2 ± 0.2 (5.0%) 0.2 ± 0.2 (5.0%) 
   

Total flavanone metabolites 13.8 ± 4.2 (4.2%) 17.2 ± 4.8 (4.8%)3 
1 The orange juice contained 330 µmol of flavanones (76 µmol naringenin-O-glycosides, 250 µmol 

hesperetin-O-glycosides, 4 µmol eriodictyol-7-O-rutinoside).  
2 Data are presented in µmol as mean values ± SE (n=10) and in bold italics as a percentage of intake. 
3 Significant increase in the excretion by the detrained volunteers (P<0.05, Wilcoxon signed rank 

test). 
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TABLE 3 

Quantities of the main phenolic and aromatic compounds excreted in urine collected for 12 h prior to supplementation 

(baseline) or 0-24 h after the ingestion of 500 mL of orange juice in trained and detrained states.1–5 

 Trained Detrained 

Phenolic catabolites Baseline5 Post-OJ intake Baseline5 Post-OJ intake 

Cinnamic acids  
 

 
 

Coumaric acid-4´-O-sulfate 0.02 ± 0.02 0.1 ± 0.0 0.05 ± 0.05 0.15 ± 0.10 

Caffeic acid-3´-sulfate 0.2 ± 0.1 < LOQ 0.2 ± 0.1 0.02 ± 0.01 

Ferulic acid 0.03 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 0.1 ± 0.1 

Ferulic acid-4´-O-glucuronide 0.2 ± 0.05 0.7 ± 0.2 0.02 ± 0.01 1.1 ± 0.23 

Ferulic acid-4´-sulfate 2.2 ± 0.8 7.8 ± 2.53 2.0 ± 1.0 5.9 ± 2.13 

Isoferulic acid-3´-O-glucuronide 0.06 ± 0.03 1.6 ± 0.53 0.07 ± 0.05 1.3 ± 0.43 

Total cinnamic acids 2.7 ± 1.1 10.3 ± 3.33 2.3 ± 1.7 8.6 ± 2.93 
     
Phenylhydracrylic acids   

 
 

 
3-(3´-Hydroxyphenyl)hydracrylic acid 1.3 ± 0.8 0.2 ± 0.3 1.3 ± 1.0 0.6 ± 0.2 

3-(3´-Hydroxy-4´-methoxyphenyl)hydracrylic acid  0.3 ± 0.2 18.5 ± 5.83 0.2 ± 0.2 21 ± 63,4 

Total phenylhydracrylic acids 1.6 ± 1.0 18.7 ± 6.13 1.5 ± 1.2 21.6 ± 6.23 

     
Phenylpropionic acids  

 
 

 
3-(4´-Hydroxyphenyl)propionic acid-3´-O-sulfate 1 ± 1 0.5 ± 0.2 1 ± 1 0.9 ± 0.4 

3-(3´-Methoxy-4´-hydroxyphenyl)propionic acid 0.3 ± 0.3 0.6 ± 0.2 0.10 ± 0.06 1.0 ± 0.33 

3-(3´-Methoxyphenyl)propionic acid-4´-O-glucuronide 0.6 ± 0.4 1.3 ± 0.4 0.5 ± 0.2 1.0± 0.4 

3-(4´-Methoxyphenyl)propionic acid-3´-O-glucuronide 0.06 ± 0.05 6.3 ± 2.03 0.06 ± 0.04 5.7 ± 1.83 

3-(3´-Methoxyphenyl)propionic acid-4´-O-sulfate 1.2 ± 0.7 2.6 ± 0.8 0.4 ± 0.2 2.5 ± 0.83 

3-(4´-Methoxyphenyl)propionic acid-3´-O-sulfate 0.06 ± 0.05 3.2 ± 1.03 0.05 ± 0.04 3.3 ± 1.03 

3-(Phenyl)propionic acid  0.2 ± 0.2 0.9 ± 0.33 0.5 ± 0.7 0.7 ± 0.2 

Total phenylpropionic acids 5.5 ± 3.7 15.4 ± 4.93 4.4 ± 3.5 15.1 ± 4.93 
     
Phenylacetic acids  

 
 

 
3´,4´-Dihydroxyphenylacetic acid 0.2 ± 0.1 1.1 ± 0.43 0.4 ± 0.4 0.7 ± 0.3 

Hydroxyphenylacetic acid-3´-sulfate 1.2 ± 0.5 < LOQ 0.7 ± 0.4 < LOQ 

3´-Methoxy-4-hydroxyphenylacetic acid  0.8 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 1.1 ± 0.1 
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Methoxyphenylacetic acid-O-glucuronide 0.8 ± 0.5 0.05 ± 0.01 0.3 ± 0.1 0.7 ± 0.33,4 

3´-Methoxyphenylacetic acid-4´-sulfate 1.2 ± 0.7 < LOQ 0.8 ± 0.5 0.2 ± 0.2 

4´-Methoxyphenylacetic acid-3´-sulfate 0.9 ± 0.3 0.6 ± 0.2 0.7 ± 0.4 0.7 ± 0.3 

3´-Hydroxyphenylacetic acid 0.3 ± 0.1 < LOQ 0.3 ± 0.3 1.7 ± 0.63,4 

4´-Hydroxyphenylacetic acid 6 ± 2 104 ± 243 3 ± 1 122 ± 383 

Phenylacetic acid 0.7 ± 0.4 0.8 ± 0.2 0.4 ± 0.2 1.5 ± 0.43 

Total phenylacetic acids 11.8 ± 4.7 107.2 ± 243 7.4 ± 3.8 128.6 ± 403,4 
     
Benzoic acids  

 
 

 
3-Hydroxybenzoic acid-4-sulfate 0.6 ± 0.3 4.8 ± 0.13 0.4 ± 0.2 6.9 ± 0.13 

4-Hydroxybenzoic acid 0.3 ± 0.2 0.1 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 

Benzoic acid-4-sulfate 2 ± 1 < LOQ 1.6 ± 0.6 < LOQ 

Total benzoic acids 3.0 ± 1.5 4.9 ± 0.2 2.3 ± 1.0 7.2 ± 0.13 

     
Mandelic acids  

 
 

 
3´-Methoxy-4´-hydroxymandelic acid 0.7 ± 0.2 0.35 ± 0.1 0.4 ± 0.1 0.9 ± 0.1 

4´-Hydroxymandelic acid 0.6 ± 0.2 1.8 ± 0.63 0.30 ± 0.07 2.4 ± 0.13 

Total mandelic acids 1.8 ± 0.4 2.15 ± 0.73 0.7 ± 0.2 3.3 ± 0.23 

     
Benzene triols  

 
 

 
1,3,5-Trihydroxyphenol 20.0 ± 3.4 10.9 ±  4.8 14.5 ± 5.2 9.3 ± 4.9 

Total benzene triols 20.0 ± 3.4 10.9 ± 4.8 14.5 ± 5.2 9.3 ± 4.9 
     
Hippuric acids  

 
 

 
4´-Hydroxyhippuric acid 1.3 ± 0.4 4.5 ± 1.33 1.0 ± 0.6 5.7 ± 1.83 

3´-Hydroxyhippuric acid 1.5 ± 1.0 0.9 ± 0.5 1.5 ± 1.2 1.5 ± 0.6 

Hippuric acid 24.0 ± 6.0 26.7 ± 8.6 18 ± 5 35.1 ± 11.03 

Total hippuric acids 26.8 ± 7.4 32.1 ± 10.4 20.4 ± 6.8 42.3 ± 13.63 

     
Total phenolic catabolites 71.7 ± 22.4 

202 ± 543 
(51%) 

52.4 ± 22.0 
236 ± 743 

(59%) 
1 Data are expressed in µmol as mean values ± SE (n=10). The orange juice contained 398 µmol of (poly)phenols.  
2 Italicised numbers in parentheses represent excretion of phenolic catabolites as a percentage of (poly)phenol intake. 
3  Statistically significant higher excretion above baseline after orange juce consumption (P<0.05, Wilcoxon signed-rank test) in trained or 

detrained states.  
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4 Significantly higher excretion of phenolic acid catabolites after orange juce intake following cessation of training for 7 days compared to 

consumption while training (p<0.05, Wilcoxon signed-rank test)  
5 Phenolic content of baseline urine collected for 12 h prior to orange juice intake used, on an excretion per hour basis, to subtract from 

excretion values of trained and detrained states obtained 0-24 h after supplementation to estimate increases in the phenolic content 

attributable to orange juice intake.  

<LOQ – value below the limit of quantification.  
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TABLE 4 

Summary of the quantities of total flavanone metabolites and phenolic colonic catabolites excreted in urine 0-24 h after the consumption of 500 

mL of orange juice by 10 endurance trained athletes in and 7-day detrained states. 1–4 

 
 

Volunteers  
 

Volunteers Metabolites/catabolites 1 2 3 4 5 6 7 8 9 10 Mean ± SE Range 

Trained Flavanone metabolites 4.8 4.9 4.9 6.9 7.8 8.2 11 13 34 42 13.8 ± 4.2 4.8  42 

 Phenolic catabolites 221 333 171 154 242 258 250 160 150 77 202 ± 54    77  333 

 Total relative to intake (%)  57 85 44 40 63 67 65 43 46 30 54 ± 17  30  85 
 

 
 

         
 

 
Detrained Flavanones metabolites 6.9 6.7 7.5 8.8 14 17 6.2 15 39 50 17.2 ± 4.83 

4.8* 

6.2  50 

 Phenolic catabolites 291 388 138 247 367 261
 

124 231
* 

189 124 236 ± 74 124  388 

 Total relative to intake (%) 75 99 36 64 96 70 33 62 57 44 64  ± 20 

 

33  96 
1 The juice contained 398 µmol of (poly)phenols including 330 µmol of flavanone. Values for phenolic catabolites background subtracted.  
2 Data expressed in µmol and in bold as a percentage of intake.  
3  Significant increase in the excretion of mean total metabolites (n = 10) following cessation of training for 7 days compared to the trained state (P<0.05, Wilcoxon 

signed-rank test) 
4  indicates an increase with individual subjects following 7 days cessation of training 
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Figure Legends 

 

Figure 1. Excretion of flavanone metabolites 0-5 h, 5-8 h, 8-10 h , 10-24 h and 0-24 h after the 

ingestion of orange juice containing  330 µmol of flavanones (76 µmol naringenin-O-

glycosides, 250 µmol hesperetin-O-glycosides, 4 µmol eriodictyol-7-O-rutinoside) by 

endurance-trained volunteers while training (trained-black bars) and after stopping training 

for  7 days (detrained-grey bars). Data expressed in  µmol as mean values ± standard error (n= 

10). *Significant increase in the excretion by the detrained volunteers (P<0.05, Wilcoxon post-

hoc test after Friedman’s ANOVA). 

 

Figure 2. Structures of selected flavanone phase II metabolites and 3-(3´-hydroxy-4´-

methoxyphenyl)hydracrylic acid detected in urine after the ingestion of orange juice. 

 

 


