526 research outputs found

    Hyper-Ramsey Spectroscopy of Optical Clock Transitions

    Full text link
    We present non-standard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case these frequency shifts can be suppressed considerably below a fractional level of 10^{-17}. Moreover, our approach opens the door for the high-precision optical clocks based on direct frequency comb spectroscopy.Comment: 5 pages, 4 figure

    New classes of exact solutions of three-dimensional Navier-Stokes equations

    Full text link
    New classes of exact solutions of the three-dimensional unsteady Navier-Stokes equations containing arbitrary functions and parameters are described. Various periodic and other solutions, which are expressed through elementary functions are obtained. The general physical interpretation and classification of solutions is given.Comment: 11 page

    Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    Get PDF
    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intra-cavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for frep and fceo, producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f - 2f interferometer and phase locked to an ultra-stable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz - 1 MHz) respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors respectively

    The use of predictive fall models for older adults receiving aged care, using routinely collected electronic health record data : a systematic review

    Get PDF
    Background: Falls in older adults remain a pressing health concern. With advancements in data analytics and increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now possible. We aimed to systematically identify studies involving the development and implementation of predictive falls models which used routinely collected electronic health record data in home-based, community and residential aged care settings. Methods: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk modelling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised and reported narratively. Results: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies had been validated externally. Three studies reported on the performance of the models. Conclusions: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. The increased availability of electronic health record data and the potential of predictive modelling to document fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic prediction model that reflects the changing status of an aged care client is key to this moving forward for fall prevention interventions

    Quantum control of 88^{88}Sr+^+ in a miniature linear Paul trap

    Full text link
    We report on the construction and characterization of an apparatus for quantum information experiments using 88^{88}Sr+^+ ions. A miniature linear radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1 MHz in all directions are obtained with 50 V on the trap end-caps and less than 1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the S1/2S_{1/2} electronic ground-state of the ion. We constructed all the necessary laser sources for laser cooling and full coherent manipulation of the ions' external and internal states. Oscillating magnetic fields are used for coherent spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are demonstrated. Following resolved sideband cooling the average axial vibrational quanta of a single trapped ion is nˉ=0.05\bar n=0.05 and a heating rate of nˉ˙=0.016\dot{\bar n}=0.016 ms1^{-1} is measured.Comment: 8 pages,9 figure

    Quantum Computing and Quantum Simulation with Group-II Atoms

    Full text link
    Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1^1S0_0 ground state and the long-lived 3^3P0_0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information Processing" on "Quantum Information with Neutral Particles

    Coherence of Spin-Polarized Fermions Interacting with a Clock Laser in a Stark-Shift-Free Optical Lattice

    Full text link
    We investigated the coherence of spin-polarized ^{87}Sr atoms trapped in a light-shift-free one-dimensional optical lattice during their interaction with a clock laser on the ^1S_0-^3P_0 transition. Collapses and revivals appeared for more than 50 Rabi cycles, attributed to the thermal distribution of discrete vibrational states in the lattice potential. The population oscillation in the clock states lasted more than 1s, demonstrating high immunity from decoherence. This long atomic coherence suggests the feasibility of Pauli blocking of collisions in optical clock excitation.Comment: 10 pages, 4 figure

    Modern microwave methods in solid state inorganic materials chemistry: from fundamentals to manufacturing

    Get PDF
    No abstract available

    Susceptibility to pattern glare following stroke

    Get PDF
    The aim of this work was to measure susceptibility to pattern glare within a stroke group, employing a direct method of assessment. Twenty stroke subjects, aged 38-85 years, were recruited, along with an age-matched control group (n = 20). Assessment of pattern glare susceptibility was undertaken using the pattern glare test. An abnormal degree of pattern glare is present when individuals score >1 on the mid-high spatial frequency difference variable, a relative score that allows for normalization of the subject, or >3 when viewing the mid spatial frequency grating. Stroke subjects demonstrate elevated levels of pattern glare compared to normative data values and a control population, as determined using the pattern glare test. This was most notable when considering the output measure for the mid-high difference variable. The mean score for the mid-high difference variable was 2.15 SD 1.27 for the stroke subjects versus 0.10 SD 1.12 for the control subjects. When considering the mid-high difference variable, 75% of the stroke group recorded an abnormal level of pattern glare compared to 5% in the control group. This study demonstrates an association between stroke subjects and elevated levels of pattern glare. Cortical hyperexcitability has been shown to present following stroke, and this has been proposed as a plausible explanation for the perceptual distortions experienced by individuals susceptible to pattern glare. Further work to assess the benefits of spectral filters in reducing perceptual distortions in stroke patients is currently underway
    corecore