103 research outputs found

    Stimulation of autologous blood lymphocytes by malignant lymphoma cells and homogenates.

    Get PDF
    The blastogenic response to autologous blood lymphocytes to whole-cell suspensions and to homogenates obtained from malignant lymphoma tissue has been investigated. Spleens were obtained from patients in whom laparotomy was performed for staging of malignant lymphoma. Cell suspensions prepared from tumour nodules were treated with mitomycin C and allowed to react with separated autologous blood lymphocytes for 6 days. Lymphocyte stimulation was measured by liquid scintillation counting after exposure to 3H-TdR. Cultures were also prepared in which autologous lymphocytes were treated with spleen tumour homogenate. Control experiments used spleens from staging procedures in which no tumour deposits were present, and normal spleens removed incidentally during other operations. In the controls, the uptake of TdR was never more than twice that of unstimulated lymphocytes. Greater degrees of lymphocyte stimulation were seen in 6 out of 14 patients, using whole tumour cells, and in 7 out of 16 patients, using tumour homogenates. The results indicate an antigenic difference between tumour and host cells, and suggest that lymphocytes can react to a tumour-associated antigen

    TPOAb and thyroid function are not associated with breast cancer outcome: evidence from a large-scale study using data from the Taxotere as Adjuvant Chemotherapy Trial (TACT, CRUK01/001)

    Get PDF
    Background: Small-scale studies correlated the presence of thyroid autoimmunity with both improved or worsened breast cancer outcome. Objectives: We aimed to clarify this association in a large cohort using the phase III, randomized, controlled Taxotere as Adjuvant Chemotherapy Trial (TACT, CRUK01/001). Methods: TACT women >18 years old with node-positive or high-risk node-negative early breast cancer (pT1–3a, pN0–1, M0), with stored plasma (n = 1,974), taken 15.5 (median; IQR 7.0–24.0) months after breast surgery were studied. Patients had also received chemotherapy (100%), radiotherapy (1,745/1,974; 88.4%), hormonal therapy (1,378/ 1,974; 69.8%), or trastuzumab (48/1,974; 2.4%). History of thyroid diseases and/or related treatments was not available. The prognostic significance of autoantibodies to thyroid peroxidase (TPOAb; positive ≥6 kIU/L), free-thyroxine and thyrotropin (combined: euthyroid, hypothyroid, hyperthyroid) was evaluated for disease-free survival (DFS), overall-survival (OS), and time-to-recurrence (TTR), with Cox regression models in univariate and multivariable analyses. The extended median follow-up was 97.5 months. Results: No difference in DFS was found by TPOAb status (unadjusted hazard ratio [HR]: 0.97, 95%CI: 0.78–1.19; p = 0.75) and/or thyroid function (unadjusted HR [hypothyroid vs. euthyroid]: 1.15, 95% CI: 0.79–1.68; p = 0.46; unadjusted HR [hyperthyroid vs. euthyroid]: 1.14, 95% CI: 0.82–1.61; p = 0.44). Similar results were obtained for OS, TTR, multivariable analyses, when TPOAb titre by tertiles was considered, and in a subgroup of 123 patients with plasma collected before adjuvant treatments. Conclusions: No evidence for a prognostic role of TPOAb and/or thyroid function in moderate-to-high-risk early breast cancer was found in the largest and longest observational study to date

    DNA methylation at a nutritionally sensitive region of the PAX8 gene is associated with thyroid volume and function in Gambian children.

    Get PDF
    Funder: Wellcome TrustPAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease

    Longitudinal characterization of autoantibodies to the thyrotropin receptor (TRAb) during alemtuzumab therapy; evidence that TRAb may precede thyroid dysfunction by many years.

    Get PDF
    BACKGROUND Thyroid autoimmunity, especially Graves’ disease or hypothyroidism with positive autoantibodies (TRAb) to the thyrotropin receptor (TSHR), occurs in 30-40% of patients with relapsing multiple sclerosis (MS) following treatment with alemtuzumab (ALTZ). ALTZ therapy therefore provides a unique opportunity to study the evolution of TRAb prior to clinical presentation. TRAb can stimulate (TSAb), block (TBAb) or not affect (“neutral”: TNAb) the TSHR function, causing hyperthyroidism, hypothyroidism or euthyroidism, respectively. METHODS We conducted a longitudinal retrospective analysis of TRAb bioactivity over a period of 9 years in 45 MS patients receiving ALTZ using available stored serum; 31 developed thyroid dysfunction (TD) and 14 remained euthyroid despite being followed for a minimum of 5 years (NO-TD). The presence of TRAb was evaluated at standardized time points: A) pre-ALTZ, B) latest time available post-ALTZ and before TD onset, C) post-ALTZ during/after TD onset. Serum TRAb were detected by published in-house assays (ihTRAb): flow cytometry (FC) detecting any TSHR-binding TRAb and luciferase bioassays (LB) detecting TSAb/TBAb bioactivity. Purified IgGs were used to verify TSAb/TBAb in selected hypothyroid cases. Standard clinical automated measurements of TRAb (autTRAb), anti-thyroid peroxidase autoantibodies (TPOAb), thyroid stimulating hormone, free-thyroxine and free-triiodothyronine were also collected. RESULTS Pre-ALTZ, combined ihTRAb (positive with FC and/or LB), but not autTRAb, were present in 5/16 (31.2%) TD versus 0/14 (0%) NO-TD (p=0.017). Detectable ihTRAb preceded TD development in 9/28 (32.1%) and by a median of 1.2 years (range 28 days – 7.3 years). Combination testing of ihTRAb and TPOAb at baseline predicted 20% of subsequent cases of hyperthyroidism and 83% of hypothyroidism. CONCLUSIONS We present evidence that TRAb measured with custom-made assays can be detected prior to any change in thyroid function in up to a third of cases of ALTZ-related TD. Furthermore, The presence of ihTRAb prior to ALTZ treatment was strongly predictive of subsequent TD. Our findings suggest that a period of affinity maturation of TRAb may precede clinical disease onset in some cases. Combined testing of TPOAb and ihTRAb may increase our ability to predict those who will develop thyroid dysfunction post ALTZ

    Changes in Whole Blood Gene Expression in Obese Subjects with Type 2 Diabetes Following Bariatric Surgery: a Pilot Study

    Get PDF
    A pilot study was performed in order to investigate the effects of bariatric surgery on whole blood gene expression profiles in obese subjects with type 2 diabetes.Whole blood from eleven obese subjects with type 2 diabetes was collected in PAXgene tubes prior to and 6-12 months after bariatric surgery. Total RNA was isolated, amplified, labeled and hybridized to Illumina gene expression microarrays. Clinical and expression data were analyzed using a paired t-test, and correlations between changes in clinical trait and transcript levels were calculated. Pathways were identified using Ingenuity Pathway Analysis and DAVID gene ontology software. Overall, bariatric surgery resulted in significant reduction of body mass index, fasting plasma glucose, fasting plasma insulin, and normalization of glycosylated hemoglobin levels. The expression levels of 204 transcripts, representing 200 unique genes, were significantly altered after bariatric surgery. Among the significantly regulated genes were GGT1, CAMP, DEFA1, LCN2, TP53, PDSS1, OLR1, CNTNAP5, DHCR24, HHAT and SARDH, which have been previously implicated in lipid metabolism, obesity and/or type 2 diabetes. Selected findings were replicated by quantitative real-time-PCR. The changes in expression of seven transcripts, WDR35, FLF45244, DHCR24, TIGD7, TOPBP1, TSHZ1, and FAM8A1 were strongly correlated with the changes in body weight, fasting plasma glucose and glycosylated hemoglobin content. The top pathways associated with gene expression changes after bariatric surgery was lipid metabolism, small molecule biochemistry and gene expression. Two antimicrobial peptides were among the transcripts with the largest changes in gene expression after bariatric surgery.Data from this pilot study suggest that whole blood expression levels of specific transcripts may be useful as biomarkers associated with susceptibility for type 2 diabetes and/or therapeutic response

    Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism

    Get PDF
    Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazi

    An InDel in Phospholipase-C-B-1 is linked with euthyroid multinodular goiter

    Get PDF
    Background: Euthyroid multinodular goiter (MNG) is common, but little is known about the genetic variations conferring predisposition. Previously, a family with MNG of adolescent onset was reported in which some family members developed papillary thyroid carcinomas (PTC). Methods: Genome-wide linkage analysis and next-generation sequencing were conducted to identify genetic variants that may confer disease predisposition. A multipoint nonparametric LOD score of 3.01 was obtained, covering 19 cM on chromosome 20p. Haplotype analysis reduced the region of interest to 10 cM. Results: Analysis of copy number variation identified an intronic InDel (∼1000 bp) in the PLCB1 gene in all eight affected family members and carriers (an unaffected person who has inherited the genetic trait). This InDel is present in approximately 1% of “healthy” Caucasians. Next-generation sequencing of the region identified no additional disease-associated variant, suggesting a possible role of the InDel. Since PLCB1 contributes to thyrocyte growth regulation, the InDel was investigated in relevant Caucasian cohorts. It was detected in 0/70 PTC but 4/81 unrelated subjects with MNG (three females; age at thyroidectomy 27–59 years; no family history of MNG/PTC). The InDel frequency is significantly higher in MNG subjects compared to controls (χ2 = 5.076; p = 0.024. PLCB1 transcript levels were significantly higher in thyroids with the InDel than without (p < 0.02). Conclusions: The intronic PLCB1 InDel is the first variant found in familial multiple papilloid adenomata-type MNG and in a subset of patients with sporadic MNG. It may function through overexpression, and increased PLC activity has been reported in thyroid neoplasms. The potential role of the deletion as a biomarker to identify MNG patients more likely to progress to PTC merits exploration

    Genome Haploidisation with Chromosome 7 Retention in Oncocytic Follicular Thyroid Carcinoma

    Get PDF
    Contains fulltext : 108012.pdf (publisher's version ) (Open Access)BACKGROUND: Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid tumours was subsequently analysed (n = 20). METHODS: Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage (allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways. RESULTS: All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7 (seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation. The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs. Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent). CONCLUSIONS: We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation, heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for future research. MICROARRAYS: Data are made available at GEO (GSE31828)

    cDNA Immunization of Mice with Human Thyroglobulin Generates Both Humoral and T Cell Responses: A Novel Model of Thyroid Autoimmunity

    Get PDF
    Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis

    Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    Get PDF
    The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown.To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation.This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies
    corecore