550 research outputs found
Translational insights from single-cell technologies across the cardiovascular disease continuum
Cardiovascular disease is the leading cause of death worldwide. The societal health burden it represents can be reduced by taking preventive measures and developing more effective therapies. Reaching these goals, however, requires a better understanding of the pathophysiological processes leading to and occurring in the diseased heart. In the last 5 years, several biological advances applying single-cell technologies have enabled researchers to study cardiovascular diseases with unprecedented resolution. This has produced many new insights into how specific cell types change their gene expression level, activation status and potential cellular interactions with the development of cardiovascular disease, but a comprehensive overview of the clinical implications of these findings is lacking. In this review, we summarize and discuss these recent advances and the promise of single-cell technologies from a translational perspective across the cardiovascular disease continuum, covering both animal and human studies, and explore the future directions of the field
Integrating GWAS with bulk and single-cell RNA-sequencing reveals a role for LY86 in the anti-Candida host response
Contains fulltext :
220669.pdf (publisher's version ) (Open Access)Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection
A characterization of cis- and trans-heritability of RNA-Seq-based gene expression
Insights into individual differences in gene expression and its heritability (h2) can help in understanding pathways from DNA to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from classical twin modeling and identity-by-state-based approaches. We estimated for each gene h2 total, composed of cis-heritability (h2 cis, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-heritability (h2 res, the residual variance explained by all other genome-wide variants). Mean h2 total was 0.26, which was significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%) RNA samples (mean h2 = 0.14, p = 6.15 × 10−258). Mean h2 cis was 0.06 and strongly correlated with beta of the top cis expression quantitative loci (eQTL, ρ = 0.76, p < 10−308) and with estimates from earlier RNA-Seq-based studies. Mean h2 res was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ = 0.04, p < 1.89 × 10−3) and was significantly higher for genes involved in cytokine-cytokine interactions (p = 4.22 × 10−15), many other immune system pathways, and genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study provides a thorough characterization of cis- and trans-h2 estimates of gene expression, which is of value for interpretation of GWAS and gene expression studies
Limited evidence for blood eQTLs in human sexual dimorphism
The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits.
To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs.
Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection.
Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs
Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure
Not just differential gene expression but also differential gene regulation in immune cells account for individual differences in the immune response. Authors show here by single-cell RNA-sequencing of peripheral blood mononuclear cells from a large cohort of genetically diverse individuals that gene expression and regulatory changes in these cells depend on the context of and interactions between cell types, genetics, type of pathogen and time after exposure. The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease
A retrospective in-depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease:Recommended outcome parameters for glucose management
Continuous glucose monitoring (CGM) systems have great potential for real-time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in-depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in-depth analysis of CGM parameters, acquired in a continuous, real-time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in-hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in-depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients
- …