58 research outputs found
How do parents manage irritability, challenging behavior, non-compliance and anxiety in children with Autism Spectrum Disorders? A meta-synthesis
Although there is increasing research interest in the parenting of children with ASD, at present, little is known about everyday strategies used to manage problem behaviour. We conducted a meta-synthesis to explore what strategies parents use to manage irritability, non-compliance, challenging behaviour and anxiety in their children with ASD. Approaches included: (1) accommodating the child; (2) modifying the environment; (3) providing structure, routine and occupation; (4) supervision and monitoring; (5) managing non-compliance with everyday tasks; (6) responding to problem behaviour; (7) managing distress; (8) maintaining safety and (9) analysing and planning. Results suggest complex parenting demands in children with ASD and problem behaviour. Findings will inform the development of a new measure to quantify parenting strategies relevant to ASD
PIF4–Mediated Activation of YUCCA8 Expression Integrates Temperature into the Auxin Pathway in Regulating Arabidopsis Hypocotyl Growth
Higher plants adapt their growth to high temperature by a dramatic change in plant architecture. It has been shown that the transcriptional regulator phytochrome-interacting factor 4 (PIF4) and the phytohormone auxin are involved in the regulation of high temperature–induced hypocotyl elongation in Arabidopsis. Here we report that PIF4 regulates high temperature–induced hypocotyl elongation through direct activation of the auxin biosynthetic gene YUCCA8 (YUC8). We show that high temperature co-upregulates the transcript abundance of PIF4 and YUC8. PIF4–dependency of high temperature–mediated induction of YUC8 expression as well as auxin biosynthesis, together with the finding that overexpression of PIF4 leads to increased expression of YUC8 and elevated free IAA levels in planta, suggests a possibility that PIF4 directly activates YUC8 expression. Indeed, gel shift and chromatin immunoprecipitation experiments demonstrate that PIF4 associates with the G-box–containing promoter region of YUC8. Transient expression assay in Nicotiana benthamiana leaves support that PIF4 directly activates YUC8 expression in vivo. Significantly, we show that the yuc8 mutation can largely suppress the long-hypocotyl phenotype of PIF4–overexpression plants and also can reduce high temperature–induced hypocotyl elongation. Genetic analyses reveal that the shy2-2 mutation, which harbors a stabilized mutant form of the IAA3 protein and therefore is defective in high temperature–induced hypocotyl elongation, largely suppresses the long-hypocotyl phenotype of PIF4–overexpression plants. Taken together, our results illuminate a molecular framework by which the PIF4 transcriptional regulator integrates its action into the auxin pathway through activating the expression of specific auxin biosynthetic gene. These studies advance our understanding on the molecular mechanism underlying high temperature–induced adaptation in plant architecture
Transcription factor PIF4 controls the thermosensory activation of flowering
Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved
Recommended from our members
Feline conjunctival microbiota in a shelter: effects of time, upper respiratory disease and famciclovir administration.
ObjectivesThe aim of this study was to evaluate changes in the conjunctival microbiota of shelter-housed cats with time, upper respiratory disease (URD) and famciclovir administration.MethodsCats were assigned to treatment groups on shelter entry. Healthy cats or cats with URD received ~30 mg/kg or ~90 mg/kg of famciclovir or placebo PO q12h for 7 days, or were untreated. Swabs were collected from ventral conjunctival fornices prior to (day 1) and immediately after (day 8) the treatment period. Microbiota analysis was conducted on 124 randomly selected swabs from healthy (56 swabs) or URD-affected (68 swabs) cats. Following DNA extraction and amplification of the V4 region of the 16S rRNA gene, sequences were assembled into operational taxonomic units (OTUs). Over-represented OTUs (as determined by linear discriminate analysis effect size), alpha and beta diversity, and median relative abundance of known feline ocular surface pathogens were assessed for the entire population and in 10 clinically relevant subpopulations of cats.ResultsBacteria from 33 phyla and 70 genera were identified. Considering all cats, median relative abundance of Mycoplasma increased from day 1 to day 8, while Proteobacteria decreased. Community membership and structure (beta diversity) differed between days 1 and 8 for all famciclovir-treated cats (regardless of health status or dose) and healthy or URD-affected cats (regardless of famciclovir dose). Differences in taxonomic diversity within a sample (alpha diversity) between day 1 and day 8 were not detected in any subpopulations.Conclusions and relevanceWithin 1 week of shelter entry, there were significant changes in community structure and membership of the feline conjunctival microbiota, with a shift towards over-representation of feline ocular surface pathogens. Although famciclovir may impact beta diversity of the feline conjunctival microbiota, absence of change in alpha diversity suggests minimal shift in individual cats
Transcription factor PIF4 controls the thermosensory activation of flowering.
Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change
- …