29 research outputs found

    Pickeringite from the Pieprzowe Mts. (the Holy Cross Mts. Central Poland)

    Get PDF
    Pickeringite (MgAl2(SO4)4 *22 H2O) associated with another sulphates (alunogene, epsomite) was found as an efflorescence mineral within the weathering zone of the Pieprzowe Mts. shale formation (the Holy Cross Mts., Central Poland)

    Lattice deformation of blue halite from Zechstein evaporite basin : Kłodawa Salt Mine, Central Poland

    Get PDF
    Outcrops of natural blue and purple halite crystals have been found in K ł odawa (Poland) salt deposit originating from the Permian (Zechstein) salt formation within tectonic zones. Field works carried out on various levels of K ł odawa Salt Mine indicated differencesbothinintensity ofthe hue and in the size of the outcrops. Their occurrence was connected with the presence of epigenetic sediments rich in potassium. For the samples of blue ha lite, an optical anisotropy (birefringence) was observed for both standard mineralogical thin sections and thick plates, indicating a deviation from cubic symmetry. The blue colouration of the halites, described by ultraviolet – visible spectroscopy, is due to the presence of colour centres. The colour centres have been recently identi- fied as: F, R 1 (F 3 ), R 2 (F 3 ), M and plasmons (Wese ł ucha- Birczy ń ska et al., Vib Spectrosc 60:124 – 128, 2012 ). The trace amount of impurities detected in the blue halites by means of scanning electron microscopy – energy dispersive X-ray spec- troscopy and micro-X-ray fluorescence techniques were con- nected mainly with solid inclusions such as K x Na (1 − x ) Cl, KMgCl 3 ·6H 2 O, KCl, orthorhombic sulphur, quartz and some other phases like pyrite. Crystallographic data obtained by X- ray diffraction experiments for the single crystals of the halite from K ł odawa with different saturation of blue or purple colours, as well as for natural colourless halite, revealed lowering of space-group symmetry to monoclinic, orthorhom- bic, trigonal, tetragonal or even triclinic systems while the space group typical for pure NaCl is Fm -3 m

    Larimar – a Unique Pectolite Rock from the Dominican Republic

    Get PDF
    Larimar jest Gemmologiczne nazwa pektolit NACA 2 Si 3 O 8 (OH) z kolorów waha się od białej do zielonkawe i światło niebieskawe na ciemnoniebieski, który znajduje się tylko w Sierra de Bohoruco, Barahona prowincji, Dominikana. Została odkryta przez hiszpańskiego księdza, Miguel Fuertes Loren, w 1916 roku poinformował swojego przełożonego o warstwie skalnej, która zawiera 33% cząsteczek Cu (Macurello i Gwineę, 1990)Larimar znajduje się w tektonicznej arkusza kredy - eoceńskiego materiałów, głównie z bazaltów andesitic Tufy i zapory doleric (Bente i wsp., 1991). Badania geochemiczne sugeruje ich korelację z Karaibów oceanicznego płaskowyżu. Podstawowym rocka gospodarz bardzo serpentinized i doznał intensywnego szczelinowania i strzyżenia. Formacja Dumisseau, reprezentowana przez skały wulkaniczne są przykryty wapienie "Formacja Neiba", począwszy od dolnego eocenu do Dolnego miocenu (Huerta i wsp., 2007). Przez większość okresu eocenu, te współistniały ze złoża węglanów lub zostały zastąpione przez materiały wulkaniczne z tholeitic do podpisania alkalicznej (OIT do OIA) zgrupowane w ramach nowego nominału El Aguacate de Neiba wulkanosedymentacyjnego Complex interpretować skojarzyć z kominku pióropusz. W północnych i południowych regionach Sierra de Bohoruco zostały złożone rafy koralowe wapienie środowisk reprezentujących płytkie Platforma Oligocenic - Miocenic wieku. Między volcanics i wapienie są przestrzegane kontakty usterek (Bente i wsp., 1991).Larimar wizualnie niejednorodna, składa się z drobno włóknistych agregatów kulistych. Pektolit, jako główny składnik jest trójskośny mineralna skrystalizowane w veinlets, podłużnice i nieregularnych mas skał wulkanicznych. Minerały takie kalcyt, zeolity (natrolit), chalcedon, hematyt, chalkozyn i krystalicznie formacje - od czasu do czasu hematyt dendryty współistnieć z pektolit i są położone wzdłuż granicy wypełnień (Wodruff i Fritsch, 1989). Apatyt, tytanitowe, Prehnit, Danburyt i Datolit znaleziono również (Macurello i Gwineę, 1990). Ponadto Espi JA & Borrego AG w 2008 roku opisany materiał organiczny związany z pektolit, (identyfikowane jako substancji lotnych) - jako materiał bardzo podobny w wyglądzie do węgla kamiennego.Ze względu na różnorodny charakter i różnych kompozycji mineralnych, zmiany koloru samoistnie w ciągu krótkich dystansach, i przedstawia inne odcienie prawie biały na światło zielonkawe, zielonkawy, zielonkawo niebieski, niebieskawy do niebieskiego. Pochodzenie Larimar kolor jest nadal przedmiotem kontrowersji. To jest związane z obecnością miedzi pochodzi z siarczku miedzi (Wodruff & Fritsch, 1989). Bente co. wszystkich. Sugeruje się, że wanadu jest przyczyną zabarwienie i nie wykluczają innych możliwych elementów, takich jak Fe, Ti, Cr, Co, Ni. Espi JA & Borrego AG 2008 sugerował, że materia organiczna może być związany z zabarwieniem Larimar.Badania petrograficzne próbek pektolit przez Espi JA & Borrego AG, przy użyciu specjalnego skaningowego mikroskopu elektronowego z dyspersją energii (detektor spektroskopii SEM - EDS) pokazuje, że żyły zawierające pektolit związane były z różnych składników mineralnych, takich jak apatyt, kalcyt, inpure hematytu, które oprócz żelaza i tlenu składa się z aluminium, tytanu, wapnia i złota. Jego skład chemiczny, prawie izometryczny kryształu i związek Mg, Al, Si, Fe, K, Au sugeruje grupę piroksen.SEM - analiza EDS został wykonany z dwóch próbek (od: lekkie niebieskawe pectolites ze skały wulkanicznej) w celu potwierdzenia pektolit poliminerals kompozycję. Hematites Inpure rozprzestrzeniania się w krystalicznych skalnego może dać alike wyniki jak kolorów - mając elementów, takich jak Cr i Cu. Niewielkie ilości miedzi znajdują się również wraz z pectolites. Jon magnezu występujące w agregatach pektolit wskazują, że te elementy mogą być zastąpione przez Ca. Jego źródłem może pochodzić z okolic oryginalnego ściennego rocka: zwłaszcza z augitic pyroxenes. Grupa pyroxenes przedstawiono również diopsyd, co jest typowe dla serpentynizacji jako zastąpienie wallrock.Pektolit Stowarzyszenie z różnych minerałów, między innymi - hematyt, kalcyt, natrolit, chalcedon, apatyt, chalkozyn i krystalizacja w veinlets, podłużnice i nieregularnych mas skał wulkanicznych sugerują jego hydrotermalnych genezę. Temperatura, w której została utworzona pektolit nie przekracza 250 ° C (BENTE et al., 1991) i jest silnie związana ze zmniejszonym CO 2 stężenia w roztworach i strefy niskiego ciśnienia (Włodyka et all., 1999).Powyższe warunki są skorelowane z wielu miejsc na świecie. Powstaje pytanie, dlaczego niebieskawo jednym krystalizuje tylko w jednym kraju - Dominikana

    Mineral assemblages as a record of the evolutionary history of the Pepper Mts. Shale Formation (the Holy Cross Mts.)

    Get PDF
    The Pepper Mts. Shale Formation, consisting of: clayey shales, mudstones and sandstones, as one of the oldest unit of the Holy Cross Mts., was subjected to mineralogical and petrographical studies. In order to reconstruct the geological history of the succession, mineral assemblages were characterized from the genetic point of view. Pyrite and goethite taking a form of bacterial-cell pseudomorphoses, crystallized during sedimentation and/or diagenesis, while quartz, kaolinite, goethite and chlorite prove subsequent alteration due to the hydrothermal fluid circulation. Secondary sulphates occurring on the pyrite-bearing rock outcrops mark the way of weathering processes. According to the presented results, Cambrian sediments were affected by hot fluids, which caused mineral recomposition and maturing of organic matter. Under the hypergenic conditions sulphate crust precipitate with pickeringite [MgAl2(SO4)4 ∙ 22H2O], as a dominant phase accompanied by alunogen [Al2(SO4)3 ∙ 17H2O] and small amount of epsomite [MgSO4 ∙ 7H2O]

    Microhardness as a method for investigation of fossil resins

    Get PDF
    Natural fossil resins are products of deciduous and coniferous trees formed at least 40 million years ago. The fact that fossil resins survived until the present day is due to appropriate processes and conditions. One of them is the ability to polymerize. There are types of chemical structures derived from the original plant secretions which formed polymerized or macromolecular connection resistant to various environmental factors (Penney 2010). The polymerization process gives property of better susceptibility to mechanical machining, and thus jeweler’s usefulness (Matuszewska 2015). Fossil resins are being found along the southern coast of the Baltic Sea (from Jutland Peninsula to the Sambia) and ranges stretching trough Germany, Poland, Lithuania, Latvia, Belarus and Ukraine (Czechowski et al. 1996, Heflik & Natkaniec-Nowak 2011). They are also occurring in other locations, for example in Mexico, Domini - can Republic, Colombia and SE Asia (e.g. Myanmar, Indonesia). The most commonly used diagnostic methods for fossil resins are spectroscopic methods (FT-IR, RS) (Kosmowska-Ceranowicz 1999a). They allow identification of different varieties of resins and get to know their internal structure (Czechowski et al. 1996, Kosmowska-Ceranowicz 1999b, Matuszewska 2010, 2015). Quantification possibilities have also other methods, such as X-ray fluorescence, diffractometry, and most of allchemical methods. In recent years, t method for determining the absolute hardness (microhardness) (Matuszewska & Gołąb 2008) was added to these analytical techniques. This parameter clearly shows the relationship between physico-chemical features with different aspects of their genesis. It can be helpful in determining the age of resins (Matuszewska et al. 2002). Hardness as the primary diagnostic feature of many minerals is evaluated relatively to model of 10 minerals in Mohs scale. Reported in the literature (Savkievich 1967, Popkova 1984, Matuszewska 2009), hardnesses of fossil resins are from 1 to 3, which correspond to hardness of talc (1), gypsum (2) and calcite (3). It therefore varies; for succinite (which is treated as a model for fossil resins) range is from 1.5 to 3, while Colombian copal from 1 to 1.5. It depends mainly on the degree of macromolecular structure condensation of these materials. The subjects of the study were samples of fossil resins selected from Mexico (Chiapas), Dominican Republic (Barahona) and Colombia (Velez). In addition, for comparison purposes Baltic succinite were measured. The measurements were done in Gemological Laboratory at WGGiOŚ AGH using a microhardness tester PMT-3 from Russian manufacturer. For the determination of this parameter Vickers method was used, according to which the microhardness determines the ratio of the pressure force of diamond pyramid with load to the lateral surface of the depth print. For measurement, 250 mg load. The test was conducted on the smooth surface of each of 6 samples repeating the measurement 20 times. The obtained results allow concluding clearly that the individual fossil resin samples are significantly different from each other. These differences result from different places of origin and age, thus the conditions of the geological, natural environment, climate, etc. Average value of the microhardness for fossil resins from Mexico and Colombia is the lowest – respectively 18.54 kG/mm 2 and 19.87 kG/mm 2 . In turn, the value of this parameter for the samples from Dominican Republic is significantly higher (yellow resin – 26.59 kG/mm 2 ; orange resin – 27.76 kG/mm 2 ; dark red resin – 26.57 kG/mm 2 ). Succinite achieves the highest values of microhardness in comparison with other resins. This is due to the difference in their ages – Eocene Baltic amber, is the oldest studied resin, therefore condensation processes in the structure are more advanced. Slightly lower values achieve Miocene – Oligocene resins from Dominican Republic. Lower Miocene – upper Oligocene and Pleistocene – Pliocene samples from Mexico and Colombia, have the lowest microhardness. The differences in microhardness of various resins may be explained by the fact that their fossilization underwent in different environmental conditions. The environmental conditions were different in various geographical locations. The degree of condensation and polymerization of the resins and their hardness increased with time. Therefore, in case of the oldest investigated resin, succinite-Baltic amber, the measured microhardeness was the highest

    A study on the formation environment of the La Cumbre amber deposit, from Santiago Province, the northwestern part of the Dominican Republic

    Get PDF
    The amber-bearing coaly shale from the La Cumbre deposit (Cordillera Septentrional, Dominican Republic) contains a large quantity of altered, coalified plant detritus. The coals in these shales are in the transition stage from meta-lignite to subbituminous coals. They are composed mainly of inertinite macerals such as fusinite, semifusinite, macrinite and secretinite. Fossil resin found in the deposit occurs in two forms: detrital grains up to several centimetres in size (type I) and very fine authigenic grains, of a few micrometers in size, inside the humic laminae (type II, resinite). The detrital fossil resins are transparent, with few mineral and organic inclusions. In their composition they contain sulfides, which may come from sulfate reduction, inclusions of plants and/or insects or be caused by volcanic activity developed in surrounding coal series. The resinites are strongly saturated with various inclusions and spatially associated with framboidal pyrite aggregates. Both fossil resin types were probably deposited in a shallow coastal lake environment in the zone bordering the floodplain of the river, with periodic floods. The marine environment conditions, which were progressively changing from oxidizing to reducing, are likely associated with the formation of the fossil resin

    Zmineralizowane fragmenty drzew mioceńskich w utworach zapadliska przedkarpackiego między Tarnowem a Dębicą : komunikat Miocene mineralized wood fragments in deposits of the Carpathian Foredeep between Tarnów and Dębica /

    No full text
    Tyt. z nagłówka.Bibliografia s.227.Dostępny również w formie drukowanej.STRESZCZENIE: Opisano efekty mineralizacji fragmentów mioceńskich drzew występujących w utworach zapadliska przedkarpackiego, wśród których dominują przedstawiciele drzew iglastych. SŁOWA KLUCZOWE: Zapadlisko Przedkarpackie, Polska, miocen, fragmenty drzew. ABSTRACT: The mineralized wood fragments from the Miocene deposits of the Carpathian Foredeep are described, which are dominated by conifer ones. KEYWORDS: Carpathian Foredeep, Poland, miocene, wood fragments

    Chrysoprase – history and present

    No full text
    The authors present the history of chrysoprase discovery and the progress of knowledge about this material over the millennia, based on the extended review of world literature. Tracing the oldest archaeological artifacts from before 9,000 years, the lens of history turns on a stone that has not been properly identified mineralogically for centuries. In the 1830s, chrysoprase was finally included into the chalcedony group and its green color was associated, very correctly, with nickel compounds dispersed in its structure. After all, the most current mineralogy of chrysoprase is presented on the basis of the results of modern analytical studies. These data clearly indicate that chrysoprase is a mixture of several SiO2 polymorphs with varying degrees of structural order (opal, chalcedony, moganite, quartz). This radically changes the previous taxonomy of chrysoprase and its position in current mineralogical and petrographic systematics

    Chrysoprase – history and present

    No full text
    The authors present the history of chrysoprase discovery and the progress of knowledge about this material over the millennia, based on the extended review of world literature. Tracing the oldest archaeological artifacts from before 9,000 years, the lens of history turns on a stone that has not been properly identified mineralogically for centuries. In the 1830s, chrysoprase was finally included into the chalcedony group and its green color was associated, very correctly, with nickel compounds dispersed in its structure. After all, the most current mineralogy of chrysoprase is presented on the basis of the results of modern analytical studies. These data clearly indicate that chrysoprase is a mixture of several SiO2 polymorphs with varying degrees of structural order (opal, chalcedony, moganite, quartz). This radically changes the previous taxonomy of chrysoprase and its position in current mineralogical and petrographic systematics
    corecore