3,993 research outputs found
On the gamma-ray emission of Type Ia Supernovae
A multi-dimension, time-dependent Monte Carlo code is used to compute sample
gamma-ray spectra to explore whether unambiguous constraints could be obtained
from gamma-ray observations of Type Ia supernovae. Both spherical and
aspherical geometries are considered and it is shown that moderate departures
from sphericity can produce viewing-angle effects that are at least as
significant as those caused by the variation of key parameters in
one-dimensional models. Thus gamma-ray data could in principle carry some
geometrical information, and caution should be applied when discussing the
value of gamma-ray data based only on one-dimensional explosion models. In
light of the limited sensitivity of current gamma-ray observatories, the
computed theoretical spectra are studied to revisit the issue of whether useful
constraints could be obtained for moderately nearby objects. The most useful
gamma-ray measurements are likely to be of the light curve and time-dependent
hardness ratios, but sensitivity higher than currently available, particularly
at relatively hard energies (~2-3 MeV), is desirable.Comment: 10 pages, 8 figures. Accepted by MNRAS. Minor changes to clarify
discussion in Section
3D Models for High Velocity Features in Type Ia Supernovae
Spectral synthesis in 3-dimensional (3D) space for the earliest spectra of
Type Ia supernovae (SNe Ia) is presented. In particular, the high velocity
absorption features that are commonly seen at the earliest epochs (
days before maximum light) are investigated by means of a 3D Monte Carlo
spectral synthesis code. The increasing number of early spectra available
allows statistical study of the geometry of the ejecta. The observed diversity
in strength of the high velocity features (HVFs) can be explained in terms of a
``covering factor'', which represents the fraction of the projected photosphere
that is concealed by high velocity material. Various geometrical models
involving high velocity material with a clumpy structure or a thick torus can
naturally account for the observed statistics of HVFs. HVFs may be formed by a
combination of density and abundance enhancements. Such enhancements may be
produced in the explosion itself or may be the result of interaction with
circumstellar material or an accretion disk. Models with 1 or 2 blobs, as well
as a thin torus or disk-like enhancement are unlikely as a standard situation.Comment: 17 pages, 12 figures. Accepted for publication in the Astrophysical
Journa
Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae
Early phase optical spectra of aspherical jet-like supernovae (SNe) are
presented. We focus on energetic core-collapse SNe, or hypernovae. Based on
hydrodynamic and nucleosynthetic models, radiative transfer in SN atmosphere is
solved with a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI.
Since the luminosity is boosted in the jet direction, the temperature there is
higher than in the equatorial plane by ~ 2,000 K. This causes anisotropic
ionization in the ejecta. Emergent spectra are different depending on viewing
angle, reflecting both aspherical abundance distribution and anisotropic
ionization. Spectra computed with an aspherical explosion model with kinetic
energy 20 x 10^{51} ergs are compatible with those of the Type Ic SN 1998bw if
~ 10-20% of the synthesized metals are mixed out to higher velocities. The
simulations enable us to predict the properties of off-axis hypernovae. Even if
an aspherical hypernova explosion is observed from the side, it should show
hypernova-like spectra but with some differences in the line velocity, the
width of the Fe absorptions and the strength of the Na I line.Comment: 4 pages, 4 figures. Accepted for publication in The Astrophysical
Journal Letter
Can differences in the nickel abundance in Chandrasekhar mass models explain the relation between brightness and decline rate of normal Type Ia Supernovae?
The use of Type Ia supernovae as distance indicators relies on the
determination of their brightness. This is not constant, but it can be
calibrated using an observed relation between the brightness and the properties
of the optical light curve (decline rate, width, shape), which indicates that
brighter SNe have broader, slower light curves. However, the physical basis for
this relation is not yet fully understood. Among possible causes are different
masses of the progenitor white dwarfs or different opacities in
Chandrasekhar-mass explosions. We parametrise the Chandrasekhar-mass models
presented by Iwamoto et al (1999), which synthesize different amounts of Ni,
and compute bolometric light curves and spectra at various epochs. Since
opacity in SNe Ia is due mostly to spectral lines, it should depend on the mass
of Fe-peak elements synthesized in the explosion, and on the temperature in the
ejecta. Bolometric light curves computed using these prescriptions for the
optical opacity reproduce the relation between brightness and decline rate.
Furthermore, when spectra are calculated, the change in colour between maximum
and two weeks later allows the observed relation between M_B(Max) and
Dm_{15}(B) to be reproduced quite nicely. Spectra computed at various epochs
compare well with corresponding spectra of spectroscopically normal SNeIa
selected to cover a similar range of Dm_{15}(B) values.Comment: 25 pages, including 6 figures. Accepted for publication in Ap
Thermal infrared observations of Mars (7.5-12.8 microns) during the 1990 opposition
Thirteen spectra of Mars, in the 7.5 to 12.8 micron wavelength were obtained on 7 Dec. 1990 from the Infrared Telescope Facility (IRTF). For these observations, a grating with an ultimate resolving power of 120 to 250 was used and wavelengths were calibrated for each grating setting by comparison with the absorption spectrum of polystyrene measured prior to each set of observations. By sampling the Nyquist limit at the shortest wavelengths, an effective resolving power of about 120 over the entire wavelength range was achieved. A total of four grating settings were required to cover the entire wavelength region. A typical observing sequence consisted of: (1) positioning the grating in one of the intervals; (2) calibrating the wavelength of positions; and (3) obtaining spectra for a number of spots on Mars. Several observations of the nearby stellar standard star, alpha Tauri, were also acquired throughout the night. Each Mars spectrum represents an average of 4 to 6 measurements of the individual Mars spots. As a result of this observing sequence, the viewing geometry for a given location or spot on Mars does not change, but the actual location of the spot on Mars's surface varies somewhat between the different grating settings. Other aspects of the study are presented
Abundance stratification in Type Ia Supernovae - II: The rapidly declining, spectroscopically normal SN 2004eo
The variation of properties of Type Ia supernovae, the thermonuclear
explosions of Chandrasekhar-mass carbon-oxygen white dwarfs, is caused by
different nucleosynthetic outcomes of these explosions, which can be traced
from the distribution of abundances in the ejecta. The composition
stratification of the spectroscopically normal but rapidly declining SN2004eo
is studied performing spectrum synthesis of a time-series of spectra obtained
before and after maximum, and of one nebular spectrum obtained about eight
months later. Early-time spectra indicate that the outer ejecta are dominated
by oxygen and silicon, and contain other intermediate-mass elements (IME),
implying that the outer part of the star was subject only to partial burning.
In the inner part, nuclear statistical equilibrium (NSE) material dominates,
but the production of 56Ni was limited to ~0.43 \pm 0.05 Msun. An innermost
zone containing ~0.25 Msun of stable Fe-group material is also present. The
relatively small amount of NSE material synthesised by SN2004eo explains both
the dimness and the rapidly evolving light curve of this SN.Comment: 12 pages, 7 figures. Accepted for publication in MNRA
Recommended from our members
Decision Aid Implementation and Patients' Preferences for Hip and Knee Osteoarthritis Treatment: Insights from the High Value Healthcare Collaborative.
Background:Shared decision making (SDM) research has emphasized the role of decision aids (DAs) for helping patients make treatment decisions reflective of their preferences, yet there have been few collaborative multi-institutional efforts to integrate DAs in orthopedic consultations and primary care encounters. Objective:In the context of routine DA implementation for SDM, we investigate which patient-level characteristics are associated with patient preferences for surgery versus medical management before and after exposure to DAs. We explored whether DA implementation in primary care encounters was associated with greater shifts in patients' treatment preferences after exposure to DAs compared to DA implementation in orthopedic consultations. Design:Retrospective cohort study. Setting:10 High Value Healthcare Collaborative (HVHC) health systems. Study participants:A total of 495 hip and 1343 adult knee osteoarthritis patients who were exposed to DAs within HVHC systems between July 2012 to June 2015. Results:Nearly 20% of knee patients and 17% of hip patients remained uncertain about their treatment preferences after viewing DAs. Older patients and patients with high pain levels had an increased preference for surgery. Older patients receiving DAs from three HVHC systems that transitioned DA implementation from orthopedics into primary care had lower odds of preferring surgery after DA exposure compared to older patients in seven HVHC systems that only implemented DAs for orthopedic consultations. Conclusion:Patients' treatment preferences were largely stable over time, highlighting that DAs for SDM largely do not necessarily shift preferences. DAs and SDM processes should be targeted at older adults and patients reporting high pain levels. Initiating treatment conversations in primary versus specialty care settings may also have important implications for engagement of patients in SDM via DAs
Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization
We discuss Monte-Carlo techniques for addressing the 3-dimensional
time-dependent radiative transfer problem in rapidly expanding supernova
atmospheres. The transfer code SEDONA has been developed to calculate the
lightcurves, spectra, and polarization of aspherical supernova models. From the
onset of free-expansion in the supernova ejecta, SEDONA solves the radiative
transfer problem self-consistently, including a detailed treatment of gamma-ray
transfer from radioactive decay and with a radiative equilibrium solution of
the temperature structure. Line fluorescence processes can also be treated
directly. No free parameters need be adjusted in the radiative transfer
calculation, providing a direct link between multi-dimensional hydrodynamical
explosion models and observations. We describe the computational techniques
applied in SEDONA, and verify the code by comparison to existing calculations.
We find that convergence of the Monte Carlo method is rapid and stable even for
complicated multi-dimensional configurations. We also investigate the accuracy
of a few commonly applied approximations in supernova transfer, namely the
stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte
Mid-IR Spectra of HED Meteorites and Synthetic Pyroxenes: Reststrahlen Features (9-12 micron)
In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids
- âŠ