3,993 research outputs found

    On the gamma-ray emission of Type Ia Supernovae

    Full text link
    A multi-dimension, time-dependent Monte Carlo code is used to compute sample gamma-ray spectra to explore whether unambiguous constraints could be obtained from gamma-ray observations of Type Ia supernovae. Both spherical and aspherical geometries are considered and it is shown that moderate departures from sphericity can produce viewing-angle effects that are at least as significant as those caused by the variation of key parameters in one-dimensional models. Thus gamma-ray data could in principle carry some geometrical information, and caution should be applied when discussing the value of gamma-ray data based only on one-dimensional explosion models. In light of the limited sensitivity of current gamma-ray observatories, the computed theoretical spectra are studied to revisit the issue of whether useful constraints could be obtained for moderately nearby objects. The most useful gamma-ray measurements are likely to be of the light curve and time-dependent hardness ratios, but sensitivity higher than currently available, particularly at relatively hard energies (~2-3 MeV), is desirable.Comment: 10 pages, 8 figures. Accepted by MNRAS. Minor changes to clarify discussion in Section

    3D Models for High Velocity Features in Type Ia Supernovae

    Full text link
    Spectral synthesis in 3-dimensional (3D) space for the earliest spectra of Type Ia supernovae (SNe Ia) is presented. In particular, the high velocity absorption features that are commonly seen at the earliest epochs (∌10\sim 10 days before maximum light) are investigated by means of a 3D Monte Carlo spectral synthesis code. The increasing number of early spectra available allows statistical study of the geometry of the ejecta. The observed diversity in strength of the high velocity features (HVFs) can be explained in terms of a ``covering factor'', which represents the fraction of the projected photosphere that is concealed by high velocity material. Various geometrical models involving high velocity material with a clumpy structure or a thick torus can naturally account for the observed statistics of HVFs. HVFs may be formed by a combination of density and abundance enhancements. Such enhancements may be produced in the explosion itself or may be the result of interaction with circumstellar material or an accretion disk. Models with 1 or 2 blobs, as well as a thin torus or disk-like enhancement are unlikely as a standard situation.Comment: 17 pages, 12 figures. Accepted for publication in the Astrophysical Journa

    Multi-Dimensional Simulations for Early Phase Spectra of Aspherical Hypernovae: SN 1998bw and Off-Axis Hypernovae

    Full text link
    Early phase optical spectra of aspherical jet-like supernovae (SNe) are presented. We focus on energetic core-collapse SNe, or hypernovae. Based on hydrodynamic and nucleosynthetic models, radiative transfer in SN atmosphere is solved with a multi-dimensional Monte-Carlo radiative transfer code, SAMURAI. Since the luminosity is boosted in the jet direction, the temperature there is higher than in the equatorial plane by ~ 2,000 K. This causes anisotropic ionization in the ejecta. Emergent spectra are different depending on viewing angle, reflecting both aspherical abundance distribution and anisotropic ionization. Spectra computed with an aspherical explosion model with kinetic energy 20 x 10^{51} ergs are compatible with those of the Type Ic SN 1998bw if ~ 10-20% of the synthesized metals are mixed out to higher velocities. The simulations enable us to predict the properties of off-axis hypernovae. Even if an aspherical hypernova explosion is observed from the side, it should show hypernova-like spectra but with some differences in the line velocity, the width of the Fe absorptions and the strength of the Na I line.Comment: 4 pages, 4 figures. Accepted for publication in The Astrophysical Journal Letter

    Can differences in the nickel abundance in Chandrasekhar mass models explain the relation between brightness and decline rate of normal Type Ia Supernovae?

    Full text link
    The use of Type Ia supernovae as distance indicators relies on the determination of their brightness. This is not constant, but it can be calibrated using an observed relation between the brightness and the properties of the optical light curve (decline rate, width, shape), which indicates that brighter SNe have broader, slower light curves. However, the physical basis for this relation is not yet fully understood. Among possible causes are different masses of the progenitor white dwarfs or different opacities in Chandrasekhar-mass explosions. We parametrise the Chandrasekhar-mass models presented by Iwamoto et al (1999), which synthesize different amounts of Ni, and compute bolometric light curves and spectra at various epochs. Since opacity in SNe Ia is due mostly to spectral lines, it should depend on the mass of Fe-peak elements synthesized in the explosion, and on the temperature in the ejecta. Bolometric light curves computed using these prescriptions for the optical opacity reproduce the relation between brightness and decline rate. Furthermore, when spectra are calculated, the change in colour between maximum and two weeks later allows the observed relation between M_B(Max) and Dm_{15}(B) to be reproduced quite nicely. Spectra computed at various epochs compare well with corresponding spectra of spectroscopically normal SNeIa selected to cover a similar range of Dm_{15}(B) values.Comment: 25 pages, including 6 figures. Accepted for publication in Ap

    Thermal infrared observations of Mars (7.5-12.8 microns) during the 1990 opposition

    Get PDF
    Thirteen spectra of Mars, in the 7.5 to 12.8 micron wavelength were obtained on 7 Dec. 1990 from the Infrared Telescope Facility (IRTF). For these observations, a grating with an ultimate resolving power of 120 to 250 was used and wavelengths were calibrated for each grating setting by comparison with the absorption spectrum of polystyrene measured prior to each set of observations. By sampling the Nyquist limit at the shortest wavelengths, an effective resolving power of about 120 over the entire wavelength range was achieved. A total of four grating settings were required to cover the entire wavelength region. A typical observing sequence consisted of: (1) positioning the grating in one of the intervals; (2) calibrating the wavelength of positions; and (3) obtaining spectra for a number of spots on Mars. Several observations of the nearby stellar standard star, alpha Tauri, were also acquired throughout the night. Each Mars spectrum represents an average of 4 to 6 measurements of the individual Mars spots. As a result of this observing sequence, the viewing geometry for a given location or spot on Mars does not change, but the actual location of the spot on Mars's surface varies somewhat between the different grating settings. Other aspects of the study are presented

    Abundance stratification in Type Ia Supernovae - II: The rapidly declining, spectroscopically normal SN 2004eo

    Full text link
    The variation of properties of Type Ia supernovae, the thermonuclear explosions of Chandrasekhar-mass carbon-oxygen white dwarfs, is caused by different nucleosynthetic outcomes of these explosions, which can be traced from the distribution of abundances in the ejecta. The composition stratification of the spectroscopically normal but rapidly declining SN2004eo is studied performing spectrum synthesis of a time-series of spectra obtained before and after maximum, and of one nebular spectrum obtained about eight months later. Early-time spectra indicate that the outer ejecta are dominated by oxygen and silicon, and contain other intermediate-mass elements (IME), implying that the outer part of the star was subject only to partial burning. In the inner part, nuclear statistical equilibrium (NSE) material dominates, but the production of 56Ni was limited to ~0.43 \pm 0.05 Msun. An innermost zone containing ~0.25 Msun of stable Fe-group material is also present. The relatively small amount of NSE material synthesised by SN2004eo explains both the dimness and the rapidly evolving light curve of this SN.Comment: 12 pages, 7 figures. Accepted for publication in MNRA

    Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization

    Get PDF
    We discuss Monte-Carlo techniques for addressing the 3-dimensional time-dependent radiative transfer problem in rapidly expanding supernova atmospheres. The transfer code SEDONA has been developed to calculate the lightcurves, spectra, and polarization of aspherical supernova models. From the onset of free-expansion in the supernova ejecta, SEDONA solves the radiative transfer problem self-consistently, including a detailed treatment of gamma-ray transfer from radioactive decay and with a radiative equilibrium solution of the temperature structure. Line fluorescence processes can also be treated directly. No free parameters need be adjusted in the radiative transfer calculation, providing a direct link between multi-dimensional hydrodynamical explosion models and observations. We describe the computational techniques applied in SEDONA, and verify the code by comparison to existing calculations. We find that convergence of the Monte Carlo method is rapid and stable even for complicated multi-dimensional configurations. We also investigate the accuracy of a few commonly applied approximations in supernova transfer, namely the stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte

    Mid-IR Spectra of HED Meteorites and Synthetic Pyroxenes: Reststrahlen Features (9-12 micron)

    Get PDF
    In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids
    • 

    corecore