46 research outputs found
"A whole way of life": ontology of culture from Raymond Williams's perspective
An overall understanding of culture, both the culture of community one lives in and the culture of communities one communicates with, seems to be important for people to live their lives under the shelter of peace. This study hands over and foregrounds what people should notice when they face with their own and other nation’s culture in order to understand it better and prevent probable problems. Knowing about the essence of one's own culture, the person can protect it while it is being attacked by other cultures. It is predicted that by being aware of all the criteria just mentioned, people can both protect their own genuine culture and communicate with other communities, with different cultures, without facing with or creating crucial problems; as a result, they can live peacefully and help the matter of globalization. The main goal of this study is to present ontology of culture through which people would be able to get how to know their own and other's cultures. This knowledge helps them to communicate properly by knowing about what aspects of culture they should focus on when facing other cultures in order not to create any crucial problem
The Empirical Mass-Luminosity Relation for Low Mass Stars
This work is devoted to improving empirical mass-luminosity relations and
mass-metallicity-luminosity relation for low mass stars. For these stars,
observational data in the mass-luminosity plane or the
mass-metallicity-luminosity space subject to non-negligible errors in all
coordinates with different dimensions. Thus a reasonable weight assigning
scheme is needed for obtaining more reliable results. Such a scheme is
developed, with which each data point can have its own due contribution.
Previous studies have shown that there exists a plateau feature in the
mass-luminosity relation. Taking into account the constraints from the
observational luminosity function, we find by fitting the observational data
using our weight assigning scheme that the plateau spans from 0.28 to 0.50
solar mass. Three-piecewise continuous improved mass-luminosity relations in K,
J, H and V bands, respectively, are obtained. The visual
mass-metallicity-luminosity relation is also improved based on our K band
mass-luminosity relation and the available observational metallicity data.Comment: 8 pages, 2 figures. Accepted for publication in Astrophysics & Space
Scienc
Simulation techniques for cosmological simulations
Modern cosmological observations allow us to study in great detail the
evolution and history of the large scale structure hierarchy. The fundamental
problem of accurate constraints on the cosmological parameters, within a given
cosmological model, requires precise modelling of the observed structure. In
this paper we briefly review the current most effective techniques of large
scale structure simulations, emphasising both their advantages and
shortcomings. Starting with basics of the direct N-body simulations appropriate
to modelling cold dark matter evolution, we then discuss the direct-sum
technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and
the tree algorithms. Simulations of baryonic matter in the Universe often use
hydrodynamic codes based on both particle methods that discretise mass, and
grid-based methods. We briefly describe Eulerian grid methods, and also some
variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 12; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Gravitational Lensing at Millimeter Wavelengths
With today's millimeter and submillimeter instruments observers use
gravitational lensing mostly as a tool to boost the sensitivity when observing
distant objects. This is evident through the dominance of gravitationally
lensed objects among those detected in CO rotational lines at z>1. It is also
evident in the use of lensing magnification by galaxy clusters in order to
reach faint submm/mm continuum sources. There are, however, a few cases where
millimeter lines have been directly involved in understanding lensing
configurations. Future mm/submm instruments, such as the ALMA interferometer,
will have both the sensitivity and the angular resolution to allow detailed
observations of gravitational lenses. The almost constant sensitivity to dust
emission over the redshift range z=1-10 means that the likelihood for strong
lensing of dust continuum sources is much higher than for optically selected
sources. A large number of new strong lenses are therefore likely to be
discovered with ALMA, allowing a direct assessment of cosmological parameters
through lens statistics. Combined with an angular resolution <0.1", ALMA will
also be efficient for probing the gravitational potential of galaxy clusters,
where we will be able to study both the sources and the lenses themselves, free
of obscuration and extinction corrections, derive rotation curves for the
lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on
"Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be
published by Springer-Verlag 2002. Paper with full resolution figures can be
found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g
Simultaneous Interpolation and Deconvolution Model for the {3-D} Reconstruction of Cell Images
Abstract. Fluorescence microscopy methods are an important imaging tech-nique in cell biology. Due to their depth sensitivity they allow a direct 3-D imag-ing. However, the resulting volume data sets are undersampled in depth, and the 2-D slices are blurred and noisy. Reconstructing the full 3-D information from these data is therefore a challenging task, and of high relevance for biologi-cal applications. We address this problem by combining deconvolution of the 3-D data set with interpolation of additional slices in an integrated variational approach. Our novel 3-D reconstruction model, Interpolating Robust and Regu-larised Richardson-Lucy reconstruction (IRRRL), merges the Robust and Regu-larised Richardson-Lucy deconvolution (RRRL) from [16] with variational inter-polation. In this paper we develop the theoretical approach and its efficient numer-ical implementation using Fast Fourier Transform and a coarse-to-fine multiscale strategy. Experiments on confocal fluorescence microscopy data demonstrate the high restoration quality and computational efficiency of our approach.