29 research outputs found

    Bridging the Gap Between Energy and Climate Policies in Brazil: Policy Options to Reduce Energy-Related GHG Emissions

    Get PDF
    Brazil is facing a series of important policy decisions that will determine its energy future over the next several decades, with important implications for the country's economic competitiveness, the well-being of its citizens, and the global climate. The decisions concern the direction of approximately 0.5 trillion U.S. dollars of anticipated investment in energy infrastructure over the next decade -- which can either lock in carbon-intensive infrastructure, or advance Brazil's position as a leader in the low-carbon economy. This report examines Brazil's key energy-related GHG emitting sectors through a climate lens in order to offer recommendations for a more integrated approach that can more effectively reconcile energy and climate needs. It begins with an overview of Brazil's past energy and GHG emissions profiles, current pledges and future trends, and a discussion of the implications for a possible allocation of the remaining global carbon budget. Next, it reviews available scenarios for Brazil's energy-related GHG emissions in order to identify key drivers and results and compare them to a given allocation of the global carbon budget. It then focuses on the top emitting subsectors -- transport, industry, and power generation -- to identify key abatement opportunities. The report concludes with recommendations regarding a portfolio of policies and measures that could achieve both climate and energy objectives

    Crise financeira, energia e sustentabilidade no Brasil

    Get PDF
    The recent global financial crisis brings about effects such as a reduction in the economic activity and consequently in energy consumption. This may be an important opportunity to reorganize the energy system under more solid and sustainable foundations: efficiency, higher share of renewables and decentralized energy production. Brazil and other developing countries can leapfrog the experience acquired by developed nations in energy efficiency, complementing with a vigorous program in renewables, particularly the "modern" (wind, solar, biomass and small hydros). However, there is a concern about the inertial Brazilian scenario, based on an increasing share of fossil fuels in the matrix, in prioritizing resources to oil and gas exploration and in the continuing unsustainable patterns of production and consumption.A recente crise financeira global traz consigo efeitos como a redução da atividade econômica e, consequentemente, do consumo de energia. Essa pode ser uma importante oportunidade para reorganizar o sistema energético em bases mais sólidas e sustentáveis: a eficiência, a maior participação das fontes renováveis e a descentralização da produção de energia. O Brasil e outros países em desenvolvimento podem aproveitar a experiência dos países desenvolvidos em eficiência energética, complementando com um programa vigoroso em energias renováveis, particularmente as "modernas" (eólica, solar, biomassa e pequenas hidrelétricas). Entretanto, preocupa o cenário inercial nacional, baseado num aumento da participação das fontes fósseis de energia na matriz, na priorização dos recursos à exploração de petróleo e gás natural e na manutenção de padrões insustentáveis de produção e consumo

    Crise financeira, energia e sustentabilidade no Brasil

    Get PDF
    The recent global financial crisis brings about effects such as a reduction in the economic activity and consequently in energy consumption. This may be an important opportunity to reorganize the energy system under more solid and sustainable foundations: efficiency, higher share of renewables and decentralized energy production. Brazil and other developing countries can leapfrog the experience acquired by developed nations in energy efficiency, complementing with a vigorous program in renewables, particularly the "modern" (wind, solar, biomass and small hydros). However, there is a concern about the inertial Brazilian scenario, based on an increasing share of fossil fuels in the matrix, in prioritizing resources to oil and gas exploration and in the continuing unsustainable patterns of production and consumption.A recente crise financeira global traz consigo efeitos como a redução da atividade econômica e, consequentemente, do consumo de energia. Essa pode ser uma importante oportunidade para reorganizar o sistema energético em bases mais sólidas e sustentáveis: a eficiência, a maior participação das fontes renováveis e a descentralização da produção de energia. O Brasil e outros países em desenvolvimento podem aproveitar a experiência dos países desenvolvidos em eficiência energética, complementando com um programa vigoroso em energias renováveis, particularmente as "modernas" (eólica, solar, biomassa e pequenas hidrelétricas). Entretanto, preocupa o cenário inercial nacional, baseado num aumento da participação das fontes fósseis de energia na matriz, na priorização dos recursos à exploração de petróleo e gás natural e na manutenção de padrões insustentáveis de produção e consumo

    Energia e meio ambiente no Brasil

    Get PDF
    Energy production and use present environmental impacts, but the present consumption patterns can be improved through a more efficient use of energy and a shift from fossil fuels to renewable sources of energy. Due to hydroelectricity and bioethanol, Brazil still has a comfortable position compared to the rest of the world. Self-sufficient in oil, the country today discusses how to supply natural gas and electricity in the medium and long terms, with different positions about the path to follow. The present article proposes recommendations, with special focus on the electricity sector.A produção e o consumo de energia são ambientalmente impactantes, mas os padrões atuais de consumo podem ser melhorados, estimulando o uso mais eficiente de energia e transição de fontes de energia fósseis para fontes renováveis. Graças à hidreletricidade, ao etanol e aos ainda baixos índices relativos de consumo energético, o Brasil tem uma posição confortável em comparação com o resto do mundo. Auto-suficiente em petróleo, o país discute hoje como garantir o suprimento de gás e eletricidade nos médio e longo prazos, com diferentes posicionamentos sobre os rumos a seguir. O presente artigo faz recomendações, com enfoque especial no setor elétrico nacional

    The Ecuador Blueprint: A Plan to Strengthen Coastal Marine Protected Areas

    Get PDF
    Ecuador's coastal and marine area is home to approximately 58% of the country's population. This population lives within 100 km of the coast and is highly dependent upon the coastal and marine ecosystems. Its coastal geography is composed of estuaries, mangroves, mountain systems, beaches, bluffs, islands, shallows, rocky and sandy seabeds and even semi-arid areas: all of which possess tremendous biodiversity and productivity. The convergence of ocean currents creates highly productive rocky seabeds, which are also ideal for the concentration and reproduction of migratory marine species (humpback whales, sea turtles, albatrosses, manta rays, sharks). Ecuador currently possesses 16 coastal marine protected areas (MPAs): nine of which are comprised of estuarine systems and mangrove forests; the other seven are coastal and have a marine protected fringe. Management of current and new protected areas poses a great challenge to the Ministry of the Environment (MAE), as mounting threats will require significant institutional, financial and technological resources. This report analyzes the legal framework, competencies and jurisdictions of all marine enforcement agencies in order to design a cost effective national surveillance system for Ecuador's MPAs. We specifically assessed current MPA surveillance and control capacity at each MPA and designed a blueprint for strengthening enforcement at both the site and provincial level that accounts for factors such as human resources, systematic training, interagency standard operating protocols, vessels, surveillance and communication technology, and long-term costs. With respect to competencies and jurisdictions, the report recommends three priority initiatives that would have immediate positive impacts in MPA enforcement:1. The MAE must formalize interagency agreements with the Navy and Police as Park Rangers do not possess the power of arrest and there is ever growing security risks at-sea; 2. As the Maritime Police, the Navy must increase their involvement in matters of surveillance and control of MPAs; 3. The MPA Directors must begin to utilize their authority to administer sanctions locally in order to expedite the sanction process and ensure compliance.The final enforcement system design provides strategic sensor coverage to MPAs, buffer zones and access ways. The strategy combines high-power video cameras and a robust VHF marine and private radio network with the minimum number of personnel and patrol vessels to provide a constant presence and fast response capacity. All CAPEX and OPEX decisions were made in consideration of a highly limited budget, which is currently underwritten by numerous sources. More importantly, we have defined a blueprint of critical steps for the capacity building and professionalization of the Park Rangers, who truly are the core component of the MAE enforcement program.

    Depois da Rio+10: as lições aprendidas em Johannesburgo

    Get PDF
    O trabalho relata a evolução do debate sobre energia renovável e sustentabilidade, desde a concepção pelo Prof. José Goldenbergda Iniciativa Energética Brasileira, na Secretaria de Meio Ambiente de São Paulo, até a participação na Rio+10, a Conferência Mundial sobreDesenvolvimento Sustentado, que ocorreu em Johannesburgo, entre agosto e setembro de 2002. Apresenta ainda um balanço dos resultadose as perspectivas futuras do processo de adoção de metas e prazos globais para a participação das fontes renováveis de energia nas matrizesenergéticas dos países.This paper presents the evolution on the debate concerning  renewable energy and sustainability,  as suggested in the Brazilian Energy Initiative proposed by São Paulo State Secretary for the Environment José Goldenberg to the Johannesburg World Summit on Sustainable Development (August-September 2002). It also includes a discussion about outcomes and future visions for the adoption of global targets and timeframes for the sharing of renewable energy sources according to the energetic matrixes of each country

    Energias renováveis: um futuro sustentável

    Get PDF

    Renewable Energy in the Context of Sustainable Development

    Get PDF
    Historically, economic development has been strongly correlated with increasing energy use and growth of greenhouse gas (GHG) emissions. Renewable energy (RE) can help decouple that correlation, contributing to sustainable development (SD). In addition, RE offers the opportunity to improve access to modern energy services for the poorest members of society, which is crucial for the achievement of any single of the eight Millennium Development Goals. Theoretical concepts of SD can provide useful frameworks to assess the interactions between SD and RE. SD addresses concerns about relationships between human society and nature. Traditionally, SD has been framed in the three-pillar model—Economy, Ecology, and Society—allowing a schematic categorization of development goals, with the three pillars being interdependent and mutually reinforcing. Within another conceptual framework, SD can be oriented along a continuum between the two paradigms of weak sustainability and strong sustainability. The two paradigms differ in assumptions about the substitutability of natural and human-made capital. RE can contribute to the development goals of the three-pillar model and can be assessed in terms of both weak and strong SD, since RE utilization is defined as sustaining natural capital as long as its resource use does not reduce the potential for future harvest. The relationship between RE and SD can be viewed as a hierarchy of goals and constraints that involve both global and regional or local considerations. Though the exact contribution of RE to SD has to be evaluated in a country specifi c context, RE offers the opportunity to contribute to a number of important SD goals: (1) social and economic development; (2) energy access; (3) energy security; (4) climate change mitigation and the reduction of environmental and health impacts. The mitigation of dangerous anthropogenic climate change is seen as one strong driving force behind the increased use of RE worldwide. The chapter provides an overview of the scientific literature on the relationship between these four SD goals and RE and, at times, fossil and nuclear energy technologies. The assessments are based on different methodological tools, including bottom-up indicators derived from attributional lifecycle assessments (LCA) or energy statistics, dynamic integrated modelling approaches, and qualitative analyses. Countries at different levels of development have different incentives and socioeconomic SD goals to advance RE. The creation of employment opportunities and actively promoting structural change in the economy are seen, especially in industrialized countries, as goals that support the promotion of RE. However, the associated costs are a major factor determining the desirability of RE to meet increasing energy demand and concerns have been voiced that increased energy prices might endanger industrializing countries’ development prospects; this underlines the need for a concomitant discussion about the details of an international burden-sharing regime. Still, decentralized grids based on RE have expanded and already improved energy access in developing countries. Under favorable conditions, cost savings in comparison to non-RE use exist, in particular in remote areas and in poor rural areas lacking centralized energy access. In addition, non-electrical RE technologies offer opportunities for modernization of energy services, for example, using solar energy for water heating and crop drying, biofuels for transportation, biogas and modern biomass for heating, cooling, cooking and lighting, and wind for water pumping. RE deployment can contribute to energy security by diversifying energy sources and diminishing dependence on a limited number of suppliers, therefore reducing the economy’s vulnerability to price volatility. Many developing countries specifically link energy access and security issues to include stability and reliability of local supply in their definition of energy security. Supporting the SD goal to mitigate environmental impacts from energy systems, RE technologies can provide important benefits compared to fossil fuels, in particular regarding GHG emissions. Maximizing these benefits often depends on the specific technology, management, and site characteristics associated with each RE project, especially with respect to land use change (LUC) impacts. Lifecycle assessments for electricity generation indicate that GHG emissions from RE technologies are, in general, considerably lower than those associated with fossil fuel options, and in a range of conditions, less than fossil fuels employing carbon capture and storage (CCS). The maximum estimate for concentrating solar power (CSP), geothermal, hydropower, ocean and wind energy is less than or equal to 100 g CO2eq/kWh, and median values for all RE range from 4 to 46 g CO2eq/kWh. The GHG balances of bioenergy production, however, have considerable uncertainties, mostly related to land management and LUC. Excluding LUC, most bioenergy systems reduce GHG emissions compared to fossil-fueled systems and can lead to avoided GHG emissions from residues and wastes in landfill disposals and co-products; the combination of bioenergy with CCS may provide for further reductions. For transport fuels, some first-generation biofuels result in relatively modest GHG mitigation potential, while most next-generation biofuels could provide greater climate benefits. To optimize benefits from bioenergy production, it is critical to reduce uncertainties and to consider ways to mitigate the risk of bioenergy-induced LUC. RE technologies can also offer benefits with respect to air pollution and health. Non-combustion-based RE power generation technologies have the potential to significantly reduce local and regional air pollution and lower associated health impacts compared to fossil-based power generation. Impacts on water and biodiversity, however, depend on local conditions. In areas where water scarcity is already a concern, non-thermal RE technologies or thermal RE technologies using dry cooling can provide energy services without additional stress on water resources. Conventional water-cooled thermal power plants may be especially vulnerable to conditions of water scarcity and climate change. Hydropower and some bioenergy systems are dependent on water availability, and can either increase competition or mitigate water scarcity. RE specific impacts on biodiversity may be positive or negative; the degree of these impacts will be determined by site-specific conditions. Accident risks of RE technologies are not negligible, but the technologies’ often decentralized structure strongly limits the potential for disastrous consequences in terms of fatalities. However, dams associated with some hydropower projects may create a specific risk depending on site-specific factors. The scenario literature that describes global mitigation pathways for RE deployment can provide some insights into associated SD implications. Putting an upper limit on future GHG emissions results in welfare losses (usually measured as gross domestic product or consumption foregone), disregarding the costs of climate change impacts. These welfare losses are based on assumptions about the availability and costs of mitigation technologies and increase when the availability of technological alternatives for constraining GHGs, for example, RE technologies, is limited. Scenario analyses show that developing countries are likely to see most of the expansion of RE production. Increasing energy access is not necessarily beneficial for all aspects of SD, as a shift to modern energy away from, for example, traditional biomass could simply be a shift to fossil fuels. In general, available scenario analyses highlight the role of policies and finance for increased energy access, even though forced shifts to RE that would provide access to modern energy services could negatively affect household budgets. To the extent that RE deployment in mitigation scenarios contributes to diversifying the energy portfolio, it has the potential to enhance energy security by making the energy system less susceptible to (sudden) energy supply disruption. In scenarios, this role of RE will vary with the energy form. With appropriate carbon mitigation policies in place, electricity generation can be relatively easily decarbonized through RE sources that have the potential to replace concentrated and increasingly scarce fossil fuels in the building and industry sectors. By contrast, the demand for liquid fuels in the transport sector remains inelastic if no technological breakthrough can be achieved. Therefore oil and related energy security concerns are likely to continue to play a role in the future global energy system; as compared to today these will be seen more prominently in developing countries. In order to take account of environmental and health impacts from energy systems, several models have included explicit representation of these, such as sulphate pollution. Some scenario results show that climate policy can help drive improvements in local air pollution (i.e., particulate matter), but air pollution reduction policies alone do not necessarily drive reductions in GHG emissions. Another implication of some potential energy trajectories is the possible diversion of land to support biofuel production. Scenario results have pointed at the possibility that climate policy could drive widespread deforestation if not accompanied by other policy measures, with land use being shifted to bioenergy crops with possibly adverse SD implications, including GHG emissions. 712 Renewable Energy in the Context of Sustainable Development Chapter 9 The integration of RE policies and measures in SD strategies at various levels can help overcome existing barriers and create opportunities for RE deployment in line with meeting SD goals. In the context of SD, barriers continue to impede RE deployment. Besides market-related and economic barriers, those barriers intrinsically linked to societal and personal values and norms will fundamentally affect the perception and acceptance of RE technologies and related deployment impacts by individuals, groups and societies. Dedicated communication efforts are therefore a crucial component of any transformation strategy and local SD initiatives can play an important role in this context. At international and national levels, strategies should include: the removal of mechanisms that are perceived to work against SD; mechanisms for SD that internalize environmental and social externalities; and RE strategies that support low-carbon, green and sustainable development including leapfrogging. The assessment has shown that RE can contribute to SD to varying degrees; more interdisciplinary research is needed to close existing knowledge gaps. While benefi ts with respect to reduced environmental and health impacts may appear more clear-cut, the exact contribution to, for example, social and economic development is more ambiguous. In order to improve the knowledge regarding the interrelations between SD and RE and to fi nd answers to the question of an effective, economically effi cient and socially acceptable transformation of the energy system, a much closer integration of insights from social, natural and economic sciences (e.g., through risk analysis approaches), refl ecting the different (especially intertemporal, spatial and intra-generational) dimensions of sustainability, is required. So far, the knowledge base is often limited to very narrow views from specifi c branches of research, which do not fully account for the complexity of the issue
    corecore