32 research outputs found

    Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress

    Get PDF
    Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling

    Inspiratory pressure-generating capacity is preserved during ventilatory and non-ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness

    Get PDF
    Diaphragm dysfunction is recognized in the mdx mouse model of muscular dystrophy, however there is a paucity of information concerning the neural control of dystrophic respiratory muscles. In young adult (8 weeks of age) male wild‐type and mdx mice, we assessed ventilatory capacity, neural activation of the diaphragm and external intercostal (EIC) muscles and inspiratory pressure‐generating capacity during ventilatory and non‐ventilatory behaviours. We hypothesized that respiratory muscle weakness is associated with impaired peak inspiratory pressure‐generating capacity in mdx mice. Ventilatory responsiveness to hypercapnic hypoxia was determined in conscious mice by whole‐body plethysmography. Diaphragm isometric and isotonic contractile properties were determined ex vivo. In anaesthetized mice, thoracic oesophageal pressure, and diaphragm and EIC electromyogram (EMG) activities were recorded during baseline conditions and sustained tracheal occlusion for 30–40s. Despite substantial diaphragm weakness, mdx mice retain the capacity to enhance ventilation during hypercapnic hypoxia. Peak volume‐ and flow‐related measures were also maintained in anaesthetized, vagotomized mdx mice. Peak inspiratory pressure was remarkably well preserved during chemoactivated breathing, augmented breaths, and maximal sustained efforts during airway obstruction in mdx mice. Diaphragm and EIC EMG activities were lower during airway obstruction in mdx compared with wild‐type mice. We conclude that ventilatory capacity is preserved in young mdx mice. Despite profound respiratory muscle weakness and lower diaphragm and EIC EMG activities during high demand in mdx mice, peak inspiratory pressure is preserved, revealing adequate compensation in support of respiratory system performance, at least early in dystrophic disease. We suggest that a progressive loss of compensation during advancing disease, combined with diaphragm dysfunction, underpins the development of respiratory system morbidity in dystrophic diseases

    Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney

    Get PDF
    We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intra-renal TRPV1 blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH), or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension (+19mmHg basal mean arterial pressure, MAP), but not in a second cohort with modest hypertension (+12mmHg). Intra-renal CPZ caused diuresis, natriuresis and a reduction in MAP in sham and CIH-exposed rats. Following intra-renal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to sham. TPRV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation or oxidative stress. We conclude that exposure to CIH: 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea

    Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat

    Get PDF
    Chronic kidney disease (CKD) occurs in more than 50% of patients with obstructive sleep apnea (OSA). However, the impact of intermittent hypoxia (IH) on renal function and oxygen homeostasis is unclear. Male Sprague Dawley rats were exposed to IH (270 secs at 21% O2; 90 secs hypoxia, 6.5% O2 at nadir) for 4 h (AIH) or to chronic IH (CIH) for 8h/day for 2 weeks. Animals were anesthetized and surgically prepared for the measurement of mean arterial pressure (MAP), and left renal excretory function, renal blood flow (RBF), and renal oxygen tension (PO2). AIH had no effect on MAP (123±14 versus (v) 129±14mmHg, mean±SEM, sham v IH). The CIH group were hypertensive (122±9 v 144±15mmHg, P<0.05). Glomerular filtration rate (GFR) (0.92±0.27 v 1.33±0.33ml/min), RBF (3.8±1.5 v 7.2±2.4ml/min) and transported sodium (TNa) (132±39 v 201±47μmol/min) were increased in the AIH group (all P<0.05). In the CIH group, GFR (1.25±0.28 v 0.86±0.28ml/min, P<0.05) and TNa (160±39 v 120±40μmol/min, P<0.05) were decreased, while RBF (4.13±1.5 v 3.08±1.5ml/min) was not significantly different. Oxygen consumption (QO2) was increased in the AIH group (6.76±2.60 v 13.60±7.77μmol/min, P<0.05), but was not significantly altered in the CIH group (3.97±2.63 v 6.82±3.29μmol/min). Cortical PO2 was not significantly different in the AIH group (46±4 v 46±3mmHg), but was decreased in the CIH group (44±5mmHg v 38±2mmHg, P<0.05). AIH: Renal oxygen homeostasis was preserved through a maintained balance between O2 supply (RBF) and consumption (GFR). CIH: Mismatched TNa and QO2 reflects inefficient O2 utilization and thereby sustained decrease in cortical PO2

    Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypo-ventilated, owing to a reduction in tidal volume. Basal CO2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and mdx mice. Diaphragm force was severely depressed in mdx mice, with evidence of fibre remodelling and damage. Diaphragm EMG responses to chemoactivation were enhanced in mdx mice. We conclude that there is evidence of chronic hypoventilation in young mdx mice. Diaphragm dysfunction confers mechanical deficiency in mdx resulting in impaired capacity to generate normal tidal volume at rest and decreased absolute ventilation during chemoactivation. Enhanced mdx diaphragm EMG responsiveness suggests compensatory neuroplasticity facilitating respiratory motor output, which may extend to accessory muscles of breathing. Our results may have relevance to emerging treatments for human DMD aiming to preserve ventilatory capacity

    Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats

    Get PDF
    peer-reviewedBackground Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. Methods Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. Findings CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. Interpretation CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. Funding Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan

    Economics, Psychology, and Social Dynamics of Consumer Bidding in Auctions

    Full text link
    With increasing numbers of consumers in auction marketplaces, we highlight some recent approaches that bring additional economic, social, and psychological factors to bear on existing economic theory to better understand and explain consumers' behavior in auctions. We also highlight specific research streams that could contribute towards enriching existing economic models of bidding behavior in emerging market mechanisms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47034/1/11002_2005_Article_5901.pd
    corecore