64 research outputs found

    Landmark Recognition in Alzheimer’s Dementia: Spared Implicit Memory for Objects Relevant for Navigation

    Get PDF
    Contains fulltext : 97074.pdf (publisher's version ) (Open Access)BACKGROUND: In spatial navigation, landmark recognition is crucial. Specifically, memory for objects placed at decision points on a route is relevant. Previous fMRI research in healthy adults showed higher medial-temporal lobe (MTL) activation for objects placed at decision points compared to non-decision points, even at an implicit level. Since there is evidence that implicit learning is intact in amnesic patients, the current study examined memory for objects relevant for navigation in patients with Alzheimer's dementia (AD). METHODOLOGY/PRINCIPAL FINDINGS: 21 AD patients participated with MTL atrophy assessed on MRI (mean MMSE = 21.2, SD = 4.0), as well as 20 age- and education-matched non-demented controls. All participants watched a 5-min video showing a route through a virtual museum with 20 objects placed at intersections (decision points) and 20 at simple turns (non-decision points). The instruction was to pay attention to the toys (half of the objects) for which they were supposedly tested later. Subsequently, a recognition test followed with the 40 previously presented objects among 40 distracter items (both toys and non-toys). Results showed a better performance for the non-toy objects placed at decision points than non-decision points, both for AD patients and controls. CONCLUSION/SIGNIFICANCE: Our findings indicate that AD patients with MTL damage have implicit memory for object information relevant for navigation. No decision point effect was found for the attended items. Possibly, focusing attention on the items occurred at the cost of the context information in AD, whereas the controls performed at an optimal level due to intact memory function.5 p

    Perspective taking and systematic biases in object location memory.

    Get PDF
    The aim of the current study was to develop a novel task that allows for the quick assessment of spatial memory precision with minimal technical and training requirements. In this task, participants memorized the position of an object in a virtual room and then judged from a different perspective, whether the object has moved to the left or to the right. Results revealed that participants exhibited a systematic bias in their responses that we termed the reversed congruency effect. Specifically, they performed worse when the camera and the object moved in the same direction than when they moved in opposite directions. Notably, participants responded correctly in almost 100% of the incongruent trials, regardless of the distance by which the object was displaced. In Experiment 2, we showed that this effect cannot be explained by the movement of the object on the screen, but that it relates to the perspective shift and the movement of the object in the virtual world. We also showed that the presence of additional objects in the environment reduces the reversed congruency effect such that it no longer predicts performance. In Experiment 3, we showed that the reversed congruency effect is greater in older adults, suggesting that the quality of spatial memory and perspective-taking abilities are critical. Overall, our results suggest that this effect is driven by difficulties in the precise encoding of object locations in the environment and in understanding how perspective shifts affect the projected positions of the objects in the two-dimensional image

    Mindfulness training for adolescents: A neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials

    Get PDF

    Phytodiversity of temperate permanent grasslands: ecosystem services for agriculture and livestock management for diversity conservation

    Full text link

    Four-Dimensional Consciousness

    Full text link
    • …
    corecore