21 research outputs found

    A microbiological and morphological study of blocked biliary stents

    Get PDF
    Biliary stent blockage represents the main limitation of the use of such devices in relieving obstructive jaundice due to a variety of malignant and benign conditions. Microbiological and morphological analysis of the occluding sludge present on the inner surface of 30 biliary stents was performed to evaluate the different components of such material and the effect of the antibiotic treatment on the biofilm formation. A highly organized biofilm, constituted by microbial cells embedded in an amorphous matrix together with crystallized bile salts, was observed Enterococcus spp . represented the most common isolate from both occluded and non-occluded stents. The antibiotic therapy, while selecting for multi-resistant bacteria and fungi, might possibly delay the biofilm formation. Key words: biliary stents, microbial colonization, biofilm

    Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms

    Get PDF
    To date there are no clear criteria to determine whether a microbe is susceptible to biocides or not. As a starting point for distinguishing between wild-type and resistant organisms, we set out to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) distributions for four common biocides; triclosan, benzalkonium chloride, chlorhexidine and sodium hypochlorite for 3319 clinical isolates, with a particular focus on Staphylococcus aureus (N = 1635) and Salmonella spp. (N = 901) but also including Escherichia coli (N = 368), Candida albicans (N = 200), Klebsiella pneumoniae (N = 60), Enterobacter spp. (N = 54), Enterococcus faecium (N = 53), and Enterococcus faecalis (N = 56). From these data epidemiological cut-off values (ECOFFs) are proposed. As would be expected, MBCs were higher than MICs for all biocides. In most cases both values followed a normal distribution. Bimodal distributions, indicating the existence of biocide resistant subpopulations were observed for Enterobacter chlorhexidine susceptibility (both MICs and MBCs) and the susceptibility to triclosan of Enterobacter (MBC), E. coli (MBC and MIC) and S. aureus (MBC and MIC). There is a concern on the potential selection of antibiotic resistance by biocides. Our results indicate however that resistance to biocides and, hence any potential association with antibiotic resistance, is uncommon in natural populations of clinically relevant microorganisms. \ua9 2014 Morrissey et al

    Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates. \ua9 2014 Macmillan Publishers Limited. All rights reserved

    Detection of Genes Encoding Internalization-Associated Proteins in Streptococcus pyogenes Isolates from Patients with Invasive Diseases and Asymptomatic Carriers

    No full text
    A total of 161 Streptococcus pyogenes isolates from patients with invasive infections or from asymptomatic carriers were examined for genes (prtF1, prtF2, and fba) coding for fibronectin-binding proteins to evaluate their involvement in the pathogenesis of different streptococcal manifestations. We found no significant differences in the presence of these three genes between the two groups. Overall, the prtF2 gene was present in similar percentages among strains from both sources (61% versus 63%). Strains carrying the gene fba were slightly more common among those isolated from asymptomatic carriers (72.6% versus 65%). Also, the prtF1 gene was present in a higher, but not significant, percentage among strains from throat swabs than among isolates from invasive infections (75% versus 64.9%). However, this more detailed characterization of the genes encoding fibronectin-binding proteins allowed us to identify a strong association of genes of the erm class, coding for macrolide resistance, with prtF1 and prtF2 rather than with prtF1 alone. Since macrolide resistance was significantly associated with throat swab isolates, it may be hypothesized that proteins coded by prtF1 and prtF2 genes may be synergic in providing support for cell invasion and/or colonizing or persistence efficiency

    Alanine Esters of Enterococcal Lipoteichoic Acid Play a Role in Biofilm Formation and Resistance to Antimicrobial Peptides

    No full text
    Enterococcus faecalis is among the predominant causes of nosocomial infections. Surface molecules like d-alanine lipoteichoic acid (LTA) perform several functions in gram-positive bacteria, such as maintenance of cationic homeostasis and modulation of autolytic activities. The aim of the present study was to evaluate the effect of d-alanine esters of teichoic acids on biofilm production and adhesion, autolysis, antimicrobial peptide sensitivity, and opsonic killing. A deletion mutant of the dltA gene was created in a clinical E. faecalis isolate. The absence of d-alanine in the LTA of the dltA deletion mutant was confirmed by nuclear magnetic resonance spectroscopy. The wild-type strain and the deletion mutant did not show any significant differences in growth curve, morphology, or autolysis. However, the mutant produced significantly less biofilm when grown in the presence of 1% glucose (51.1% compared to that of the wild type); adhesion to eukaryotic cells was diminished. The mutant absorbed 71.1% of the opsonic antibodies, while absorption with the wild type resulted in a 93.2% reduction in killing. Sensitivity to several cationic antimicrobial peptides (polymyxin B, colistin, and nisin) was considerably increased in the mutant strain, confirming similar results from other studies of gram-positive bacteria. Our data suggest that the absence of d-alanine in LTA plays a role in environmental interactions, probably by modulating the net negative charge of the bacterial cell surface, and therefore it may be involved in the pathogenesis of this organism

    A new genotyping scheme based on MLVA for inter-laboratory surveillance of Streptococcus pyogenes.

    No full text
    International audienceA newly developed MLVA seven-loci scheme for Streptococcus pyogenes is described. The method can be successfully applied by using both agarose gel with visual inspections of bands and Lab on Chip technology. The potential of the present MLVA has been tested on a collection of 100 clinical GAS strains representing the most common emm types found in high-income countries plus 18 published gap-free genomes, in comparison to PFGE and MLST. The MLVA analysis defined 30 MLVA types with ten out of the considered 15 emm types exhibiting multiple and specific MLVA types. In only one occasion the same MLVA profile was shared between isolates belonging to two different emm types. A robust congruency between the methods was observed, with MLVA discriminating within clonal complexes as defined by PFGE or MLST. This new MLVA scheme can be adopted as a quick, low-cost and reliable typing method to track the short-term diffusion of GAS clones in inter-laboratory-based surveillance
    corecore