16 research outputs found

    Cuticular chemoprofile of the fruit fly drosophila subobscura (diptera, drosophilidae)

    Get PDF
    In insects, cuticular hydrocarbon (CHC) profile is involved in many important biological functions and may vary in different conditions. Among fruit fly species, Drosophila subobscura is one of the most frequently used in genetic, ecological and evolutionary research, because of its rich chromosomal polymorphism, specific behavioral repertoires and habitat preferences. In this work, we identified and quantified cuticular chemoprofile of D. subobscura. Using gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS), 25 chemical compounds were found in males and 23 compounds were found in females. Further, ANOVA confirmed significant sexual dimorphism in cuticular chemoprofile amounts. Knowledge of cuticular chemistry could contribute to further research in D. subobscura, starting from behavioral, up to ecological, since this species is recognized as an important model system for the study and monitoring of global climate changes

    A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases from Streptomyces lividans

    Get PDF
    Dye decolourising peroxidases (DyPs) are oxidative haem containing enzymes that can oxidise organic substrates by first reacting with hydrogen peroxide. Herein, we have focused on two DyP homologs, DtpAa and DtpA, from the soil-dwelling bacterium Streptomyces lividans. By using X-ray crystallography, stopped-flow kinetics, deuterium kinetic isotope studies and EPR spectroscopy, we show that both DyPs react with peroxide to form Compound I (a FeIV=O species and a porphyrin π-cation radical), via a common mechanism, but the reactivity and rate limits that define the mechanism are markedly different between the two homologs (DtpA forms Compound I rapidly, no kinetic isotope effect; DtpAa 100-fold slower Compound I formation and a distinct kinetic isotope effect). By determining the validated ferric X-ray structure of DtpAa and comparing it with the ferric DtpA structure, we attribute the kinetic differences to a subtle structural repositioning of the distal haem pocket Asp side chain. Through site-directed mutagenesis we show the acid-base catalyst responsible for proton-transfer to form Compound I comprises a combination of a water molecule and the distal Asp. Compound I formation in the wild-type enzymes as well as their distal Asp variants is pH dependent, sharing a common ionisation equilibrium with an apparent pKa of ~ 4.5-5.0. We attribute this pKa to the deprotonation/protonation of the haem bound H₂O₂. Our studies therefore reveal a mechanism for Compound I formation in which the rate limit may be shifted from peroxide binding to proton-transfer controlled by the distal Asp position and the associated hydrogen-bonded water molecules

    Cuticular chemoprofile of the fruit fly drosophila subobscura (diptera, drosophilidae)

    Get PDF
    In insects, cuticular hydrocarbon (CHC) profile is involved in many important biological functions and may vary in different conditions. Among fruit fly species, Drosophila subobscura is one of the most frequently used in genetic, ecological and evolutionary research, because of its rich chromosomal polymorphism, specific behavioral repertoires and habitat preferences. In this work, we identified and quantified cuticular chemoprofile of D. subobscura. Using gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS), 25 chemical compounds were found in males and 23 compounds were found in females. Further, ANOVA confirmed significant sexual dimorphism in cuticular chemoprofile amounts. Knowledge of cuticular chemistry could contribute to further research in D. subobscura, starting from behavioral, up to ecological, since this species is recognized as an important model system for the study and monitoring of global climate changes

    The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication In Vitro and Decreases Viral Titers and Disease Progression in Syrian Hamsters

    Get PDF
    Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19

    Spatial–Temporal Variations in Atmospheric Factors Contribute to SARS-CoV-2 Outbreak

    No full text
    The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has reached over five million confirmed cases worldwide, and numbers are still growing at a fast rate. Despite the wide outbreak of the infection, a remarkable asymmetry is observed in the number of cases and in the distribution of the severity of the COVID-19 symptoms in patients with respect to the countries/regions. In the early stages of a new pathogen outbreak, it is critical to understand the dynamics of the infection transmission, in order to follow contagion over time and project the epidemiological situation in the near future. While it is possible to reason that observed variation in the number and severity of cases stems from the initial number of infected individuals, the difference in the testing policies and social aspects of community transmissions, the factors that could explain high discrepancy in areas with a similar level of healthcare still remain unknown. Here, we introduce a binary classifier based on an artificial neural network that can help in explaining those differences and that can be used to support the design of containment policies. We found that SARS-CoV-2 infection frequency positively correlates with particulate air pollutants, and specifically with particulate matter 2.5 (PM2.5), while ozone gas is oppositely related with the number of infected individuals. We propose that atmospheric air pollutants could thus serve as surrogate markers to complement the infection outbreak anticipation

    Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells

    Get PDF
    Nuclear bodies (NBs), characterized by the presence of the promyelocytic leukemia (PML) protein, are important components of the nuclear architecture, contributing to genetic and epigenetic control of gene expression. In investigating the mechanisms mediating HIV-1 latency, we determined that silenced but transcriptionally competent HIV-1 proviruses reside in close proximity to PML NBs and that this association inhibits HIV-1 gene expression. PML binds to the latent HIV-1 promoter, which coincides with transcriptionally inactive facultative heterochromatic marks, notably H3K9me2, at the viral genome. PML degradation and NB disruption result in strong activation of viral transcription as well as release of G9a, the major methyltransferase responsible for H3K9me2, and loss of facultative heterochromatin marks from the proviral DNA. Additionally, HIV-1 transcriptional activation requires proviral displacement from PML NBs by active nuclear actin polymerization. Thus, nuclear topology and active gene movement mediate HIV-1 transcriptional regulation and have implications for controlling HIV-1 latency and eradication

    Alterations of redox and iron metabolism accompany the development of HIV latency

    No full text
    HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4(+) T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin-proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment

    Nuclear architecture dictates HIV-1 integration site selection

    Get PDF
    International audienceLong-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle
    corecore