136 research outputs found

    Probing the Equation of State of Ultradense Matter with a Submillisecond Pulsar Search Experiment

    Get PDF
    Current ideas about the equation of state for the ultradense matter constituting neutron stars provide models with a range of neutron star radii for a given mass. This implies different estimates for the maximum angular velocity that such an object could attain. The fastest and the slowest angular velocity differ by a significant amount, depending on the equation of state adopted. In particular, the identification of a submillisecond pulsar would allow us to constrain the equation of state of dense matter. In this paper, we discuss a possible evolutionary scenario resulting in a submillisecond pulsar, taking into account current ideas about the evolution of the magnetic field of neutron stars. Pulsar luminosities and lifetimes in the submillisecond period range, derived on the basis of phenomenological considerations, suggest that the effort of searching for such an object would be worthwhile. All the pulsar searches conducted up to now have been prevented by instrumental selection effects from probing the submillisecond range. We discuss the feasibility of a submillisecond pulsar search experiment in the context of current hardware and software capabilities

    On Low Mass X-ray Binaries and Millisecond Pulsar

    Get PDF
    The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular momentum, the neutron star accumulates an extraordinary amount of mechanical rotational energy, up to one percent of its whole rest-mass energy. These millisecond spinning neutron stars are truly extreme physical objects: General and Special Relativity are fully in action, since their surfaces, attaining speeds close to one fifth of the speed of light, are located just beyond their Schwartzscild Radius, and electrodynamical forces, caused by the presence of huge surface magnetic fields of several hundred million Gauss, display their spectacular properties accelerating electrons up to such energies to promote pair creation in a cascade process responsible for the emission in Radio and Gamma-ray. The rotational energy is swiftly converted and released into electromagnetic power which, in some cases, causes the neutron star to outshine with a luminosity of one hundred Suns. In this paper I will review some of the most recent discoveries on (accreting) millisecond pulsars.Comment: 7 pages, 1 table, proceedings of the conference: "Reading the book of Globular Clusters with the lens of stellar evolution", Rome Astronomical Observatory, 26-28 November 201

    Quantum clock: A critical discussion on spacetime

    Get PDF
    We critically discuss the measure of very short time intervals. By means of a Gedankenexperiment, we describe an ideal clock based on the occurrence of completely random events. Many previous thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δt\Delta t that this clock can measure scales as the inverse of its size Δr\Delta r. This implies an uncertainty relation between space and time: Δr\Delta r Δt\Delta t >Gℏ/c4> G \hbar / c^4; where G, ℏ\hbar and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.Comment: 10 pages, published in Physical Review

    Harmonic Coupling of the Red Noise in X-Ray Pulsars

    Get PDF
    The power spectra of X-ray pulsars often show the presence of a red-noise component. This noise is produced by aperiodic variability believed to be associated with instabilities that seem to occur in accretion flows onto compact objects. In this paper we discuss how, independently of the details of the physical processes that generate these instabilities, a careful analysis of the power spectra can furnish some constraints on the distance from the stellar surface at which the sudden energy release associated with the instabilities occurs. In particular, any aperiodic variability coming from the accretion flow funneled toward the magnetic poles should be modulated at the pulsar spin period (coupling). We show how, in the power spectra, this coupling results in a broadening at the base of the harmonics. To investigate this effect, we have adopted a mathematical description of the noise in order to produce simulated light curves and the resulting power spectra. A comparison of power spectra from simulations with real data allows the detection or exclusion of the broadening effect. As an application of this method we have compared simulated power spectra with one obtained from a Ginga observation of the X-ray pulsar SMC X-1. For this source the coupling effect is evident

    Spectral changes during six years of Scorpius X-1 monitoring with BeppoSAX Wide Field Cameras

    Full text link
    We analyse a sample of fifty-five observations of Scorpius X-1 available in the BeppoSAX Wide Field Camera public archive and spanning over the six years of BeppoSAX mission life. Spectral changes are initially analysed by inspection of colour-colour and colour-intensity diagrams, we also discuss the shift of the Z tracks in these diagrams. Then we select two long observations for spectral fitting analysis, a secular shift is evident between the tracks in these observations. We finally extract spectra along the tracks and discuss the best fit model, the parameter variations along the track and between tracks, and their link to the accretion rate.Comment: 6 pages, 11 postscrpt figures.To appear in the conference proceedings of `Interacting Binaries: Accretion, Evolution & Outcomes' (Cefalu', July 4-10 2004

    Neutron stars with submillisecond periods: a population of high mass objects?

    Get PDF
    Fast spinning neutron stars, recycled in low mass binaries, may have accreted a substantial amount of mass. The available relativistic measurements of neutron star masses, all clustering around 1.4 M_sun, however refer mostly to slowly rotating neutron stars which accreted a tiny amount of mass during evolution in a massive binary system. We develop a semi-analytical model for studying the evolution of the spin period P of a magnetic neutron star as a function of the baryonic mass load M_{ac}; evolution is followed down to submillisecond periods and the magnetic field is allowed to decay significantly before the end of recycling. We use different equations of state and include rotational deformation effects, the presence of a strong gravitational field and of a magnetosphere. For the non-magnetic case, comparison with numerical relativistic codes shows the accuracy of our description. The minimum accreted mass requested to spin-up a magnetized 1.35M_sun-neutron star at a few millisecond is 0.05 M_sun, while this value doubles for an unmagnetized neutron star. Below 1 millisecond the request is of at least 0.25 M_sun. There may exist a yet undetected population of massive submillisecond neutron stars. The discovery of a submillisecond neutron star would imply a lower limit for its mass of about 1.7M_sun.Comment: To appear in the Astrophysical Journal, June 199

    Recycling neutron stars to ultra short periods: a statistical analysis of their evolution in the mu-P plane

    Get PDF
    We investigate the statistical evolution of magnetic neutron stars, recycled in binary systems, simulating synthetic populations. To bracket uncertainties, we consider a soft (FP) and a stiff (PS) equation of state (EoS) for nuclear matter and explore the hypothesis that the magnetic field is confined in the stellar crust. We follow the magneto-rotational evolution within a simple recycling scenario, including the possibility of magnetospheric propeller. We find the presence of a tail in the period distribution of the synthetic populations at periods shorter than 1.558 ms, the minimum detected so far. For the soft EoS the recycling gives rise to a spin distribution which is increasing monotonically toward short periods and a clear ``barrier'' forms at the minimum period for the onset of mass shedding. For the stiff EoS the distribution is flatter displaying a broad maximum about 2-4 ms. The estimated fraction of neutron stars spinning close to their shedding limit over the millisecond pulsar population is found to be significant. Crustal magnetic field decay models predict the existence of massive (M>1.4 M_sun) rapidly spinning neutron stars with very low magnetic moment.Comment: 34 pages, 2 tables, 9 figures, Latex. Accepted (5 Jul 99) for publication in the Astrophysical Journal Supplement

    3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    Full text link
    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M˙\dot{M}. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M˙\dot{M}.Comment: 2 pages, 1 figure, to appear in the Proceedings of the Bologna x-ray conference 2009, uses aipproc.cls, aip-6s.clo,

    Temporal Analysis of EXO 0531-66 in Outburst

    Get PDF
    We report a timing analysis of the Be transient X-ray binary EXO 053109-6609.2 in outburst observed with BeppoSAX. The luminosity of the source is ~1.1 × 1037 ergs s-1, similar to that observed in the previous three outbursts. The source shows pulsations from 0.1 up to 60 keV. The pulsed fraction does not seem to decrease with the energy. The pulse profile is double peaked in the whole energy band. The barycentric pulse period is 13.67590 ± 0.00008 s at MJD 50,520.0. The average rate of period change during the ~2 days of BeppoSAX observation is (3.7 ± 0.5) × 10-9 s s-1. Comparison with ROSAT data allowed the determination of a secular spin-down sec ~(3.67 ± 0.05) × 10−11 s s-1, computed over an interval of 1960 days
    • 

    corecore