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ABSTRACT
The power spectra of X-ray pulsars often show the presence of a red-noise component. This noise is

produced by aperiodic variability believed to be associated with instabilities that seem to occur in accre-
tion Ñows onto compact objects. In this paper we discuss how, independently of the details of the physi-
cal processes that generate these instabilities, a careful analysis of the power spectra can furnish some
constraints on the distance from the stellar surface at which the sudden energy release associated with
the instabilities occurs. In particular, any aperiodic variability coming from the accretion Ñow funneled
toward the magnetic poles should be modulated at the pulsar spin period (coupling). We show how, in
the power spectra, this coupling results in a broadening at the base of the harmonics. To investigate this
e†ect, we have adopted a mathematical description of the noise in order to produce simulated light
curves and the resulting power spectra. A comparison of power spectra from simulations with real data
allows the detection or exclusion of the broadening e†ect. As an application of this method we have
compared simulated power spectra with one obtained from a Ginga observation of the X-ray pulsar
SMC X-1. For this source the coupling e†ect is evident.
Subject headings : methods : statistical È stars : individual (SMC X-1) È stars : magnetic Ðelds È

stars : neutron È X-rays : stars

1. INTRODUCTION

Despite the profound di†erences between the main types of accretionÈpowered Galactic and extragalactic X-ray sources, a
remarkable feature shared by these systems is the presence of aperiodic variability in X-ray light curves. This kind of
variability, often referred to as noise because of its random character, has been studied since its detection in the light curve of
the black hole candidate Cygnus X-1 observed with the Uhuru satellite In particular, the same kind of(Terrell 1972).
variability has been reported in several low-mass X-ray binaries van Paradijs, & van der Klis der Klis(Lewin, 1988 ; van 1989,
and references therein) and in a number of X-ray pulsars and black hole candidates (see, e.g., & Hasinger TheBelloni 1990).
physical processes underlying this kind of phenomenon are still unclear ; however, there is general consensus interpreting this
variability as a signature of the presence of instabilities in the inÑow of matter to the compact source.

On the contrary, only a restricted group of the accreting sources shows periodic behavior that is associated with the
rotation of the accretor about its axis. In particular, X-ray pulsators show spin modulation on timescales ranging over 4
orders of magnitude (from 0.069 s of A0538[66 to 1455 s of RX J0146]619). In these sources the strong magnetic Ðelds of the
neutron star funnel the accretion Ñow toward the magnetic poles. Most of the X-ray luminosity is produced in the magneti-
cally conÐned accretion columns just above the poles. The rotation of the compact object about its axis produces the so-called
lighthouse e†ect, which modulates the X-ray light curve.

A useful approach in studying both aperiodic and periodic variabilities in X-ray pulsars is the production of power spectral
density (PSD) from a fast Fourier transform of the X-ray light curve. In this context the aperiodic variability is indicated by
the presence of red noise (RN) in the PSD, a broadband feature in which the power is decreasing toward the high frequencies.
Usually the RN shape is a Lorentzian, a power law, a power law with an exponential cuto†, or a combination of power laws
with di†erent indices. In addition, more complex features, like bumps and wiggles, are sometimes present over the underlying
shape. On the other hand, the periodic variability determines, in the PSD, a family of harmonic lines.

Usually the aperiodic and periodic variabilities are considered separately. For this reason the PSD of an X-ray pulsator is
regarded as resulting from the sum of the RN and the harmonic lines. However, this should be regarded as a simpliÐed
approach. In fact, if the instabilities that are responsible for the red noise are produced when the accretion Ñow has already
been conÐned by the magnetic Ðeld of the neutron star and brought very close to its surface, the aperiodic variability is
modulated by the pulsar spin period. From this point on we refer to this modulation of the aperiodic variability as
““ coupling.ÏÏ In terms of the Fourier transform this coupling results in the convolution of the RN with the harmonic lines. In
the ideal case of an inÐnite periodic signal the harmonics are represented by a family of d-functions. In this case the result of
the convolution is to place a rescaled version of the RN at the position of each harmonic frequency, mimicking a broadening
at the base of the harmonic lines. On the other hand, if the aperiodic variability is generated in regions far away from the
stellar surface, where the accreting Ñow is still una†ected by the magnetic funneling, the periodic and aperiodic features are
actually independent and there is no broadening at the base of the harmonic lines. From what is discussed above it is clear
that a detailed analysis of the PSD shape at the base of the harmonic lines of an X-ray pulsator could determine whether the
aperiodic and periodic features are coupled.
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An analytic derivation of the power spectrum of a signal showing aperiodic variability modulated by a periodic function is
described in the Appendix, and the e†ects of the coupling are shown. However, the Ðnite length of a real light curve introduces
a general broadening of each feature in the PSD (due to its convolution with the window function ; see Appendix). Moreover,
cross terms from the relative phases of the harmonics of the periodic signal arise when the square modulus of the Fourier
transform is taken to calculate the power spectra. It is not possible to consider these e†ects in the analytic derivation, so the
formulae obtained are only approximate. With these formulae it is possible to Ðt the PSD of an X-ray pulsator to search for
the coupling e†ects. Nevertheless, the broadening arising from the coupling e†ects is mixed with the broadening and
interference e†ects mentioned above, making the results of any Ðt of the PSD with our approximate analytical expressions not
totally conclusive. To overcome this problem we have adopted a more accurate approach. We have simulated Ðnite-length
light curves of an X-ray pulsator for di†erent degrees of coupling between the aperiodic component and the periodic
modulation. The corresponding PSDs were then produced and compared to that obtained from a real data set. In this way all
the e†ects resulting from a Ðnite length of the signal are properly taken into account.

To this end we have chosen a reliable mathematical description of the aperiodic variability that produces the red-noise
component. Although several kinds of processes can, in principle, lead to this kind of feature (such as autoregressive processes
or deterministic chaos, as suggested by some authors ; e.g., Atmanspacher, & Scheingraber the randomVoges, 1987),
occurrence of single shots (shot-noise model) is a simple way in which a red noise can be produced. Moreover, fractal analysis
of X-ray emission from the X-ray pulsar Centaurus X-3 has been performed to decide the nature of the phenomena that result
in the aperiodic variability in X-ray pulsars et al. The results have shown that the fractal dimension of the(Kanetake 1994).
X-ray intensity is º7 when all the variation due to the spin period is removed. This does not Ðt the idea that the aperiodic
variability is caused by global hydrodynamical chaotic oscillations that, typically, are associated with a fractal dimension of 2
or 3, and it seems to indicate that the observed noise is produced by a random superposition of local variability, reinforcing
the shot-noise model. In line with this, we have adopted a shot-noise model to describe the aperiodic variability of the X-ray
pulsars.

2. INTERACTION OF THE ACCRETING MATTER WITH THE NEUTRON STAR MAGNETIC FIELD

Since the discovery of the Ðrst periodically pulsating X-ray binaries Cen X-3 et al. and Her X-1(Giacconi 1971)
et al. modulated emission from the X-ray pulsars has been interpreted in terms of accretion on a rotating,(Tananbaum 1972),

magnetized neutron star. The complex physics of accretion onto compact objects, taking into account both the e†ects of
stellar rotation and magnetic Ðelds, has been considered by several authors (e.g., Pethick, & Pines In general, farLamb, 1973).
from its surface the neutron star magnetic Ðeld is screened by currents Ñowing in the highly conducting accreting plasma,
while near the star the matter is threatened by the Ðeld and forced to corotate with the neutron star. The transition between
these two regimes deÐnes the magnetosphere, the zone where the interaction between the accreting matter and the stellar
magnetic Ðeld takes place. The distance of the magnetosphere from the neutron star is of the order of the Alfve� n radius,
deÐned as the point where the energy density of the accreting matter (mainly its kinetic energy) is equal to the energy density
of the magnetic Ðeld. The plasma penetration through the magnetosphere occurs via instability phenomena. Any energy
released (in the form of radiation) during the onset of these instabilities could a†ect the aperiodic variability. On the other
hand, if the accreting Ñow is already clumpy before the penetration through the magnetosphere, it is important to ask whether
these clumps survive to the interaction with the stellar magnetic Ðeld until the impact with the neutron star surface.

In the following we brieÑy review the di†erent mechanisms proposed for the plasma penetration through the magneto-
sphere and the onset of the instabilities that are typically associated with the interaction of the accretion Ñow with the
magnetic Ðeld of the neutron star, suggesting, in some cases, whether the aperiodic variability is expected to be coupled with
the neutron star rotation.

The structure of the magnetosphere and the physical processes that drive the plasma penetration through it are strongly
dependent on the speciÐc angular momentum of the accreting material respect to the accretor center. If the angular momen-
tum is low enough, the motion of the in-falling plasma is almost radial. The accreting material is stopped by a collisionless
shock few hundreds of kilometers above the magnetosphere & Lea & Lamb The(Arons 1976a, 1976b ; Elsner 1977).
magnetospheric equator is located at a distance equal to the Alfve� n radius from the neutron star center. Two cusps are present
above the neutron star magnetic poles at a distance half the Alfve� n radius. This magnetosphere is stable against plasma
penetration unless the plasma undergoes some cooling. In fact, if inverse Compton cooling of the plasma electrons in the
radiation bath of the X-rays coming from the stellar surface is e†ective, Rayleigh-Taylor (interchange) instabilities set in, and
the plasma can penetrate the magnetosphere in the form of long diamagnetic Ðlaments and accrete onto the neutron star
surface converting its potential energy into X-rays. The growth and the motion of these mushroom-like Ðlaments inside the
magnetosphere has been investigated analytically and numerically by several authors & Lamb & Lamb(Elsner 1977 ; Ghosh

& Lea & Welter Wang & Robertson Nepveu, & Robertson &1978 ; Arons 1980 ; Wang 1982 ; 1984 ; Wang, 1984 ; Wang
Robertson The initial motion of these Ðlaments is between the Ðeld lines, and, in principle, some of these Ðlaments can1985).
fall toward the stellar surface without ever becoming threaded by the Ðeld. In this case, the compression of the Ðlaments by the
magnetic Ðeld can be negligible, and the size of any clumpy feature, close to the neutron star crust crust, could be comparable
with the neutron star radius, resulting into accretion onto the whole stellar surface. In this case no spin-modulation e†ect is
expected to arise if the aperiodic variability is associated with the impact of these uncompressed clumps with the neutron star
crust. However, Kelvin-Helmholtz (shear) instabilities growing at the Ðlament surfaces can evaporate the Ðlaments, resulting
in a threading by the magnetic Ðeld lines at the so-called plasmapause surface. In this case, the position of the magnetic Ðeld
lines tangent to this surface deÐnes, on the neutron star surface, the size of the magnetic caps onto which the matter Ðnally
accretes. In this case, if the accretion Ñow above each magnetic pole is clumpy, the resulting aperiodic variability is strongly
modulated at the spin period.
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Other penetration mechanisms like accretion via polar cusp di†usion, magnetic Ðeld reconnection, or polar cusp descent
toward the surface under the e†ect of gravity have been investigated & Lamb However, in the case of radial(Elsner 1984).
inÑow and for luminosities º1036 ergs s~1, where a signiÐcant fraction of the magnetosphere is efficiently illuminated by the
X-ray Ñux, the most efficient penetration mechanism is the onset of Rayleigh-Taylor instabilities. These conditions are typical
in the slow-rotating wind-fed high-mass X-ray binaries.

On the other hand, if the speciÐc angular momentum of the accreting material is high enough, the accreting matter orbits
the neutron star in a Keplerian accretion disk. In this case, the situation is di†erent & Lamb Pines &(Ghosh 1978 ; Lamb,
Shaham & Lamb & Shaham et al. & Lamb As a result of1978a, 1978b ; Ghosh 1979 ; Alpar 1985 ; Lamb 1985 ; Ghosh 1991).
Keplerian centrifugal forces, the e†ective gravity on the accreting matter is strongly reduced, and consequently interchange
instabilities are substantially suppressed. In the extreme case of a perfectly conducting plasma, a diamagnetic disk can be
formed outside the magnetosphere. The pressure of this disk deforms the shape of the magnetosphere into an hourglassÈlike
surface, the waist of which is surrounded by the disk. The radius of this waist is about half the Alfve� n radius. Di†erent physical
processes cause the mixing of the neutron star magnetic Ðeld lines and the plasma of the disk, allowing the plasma to penetrate
the magnetosphere and accretion to occur. The main processes are Kelvin-Helmholtz instabilities at the interface between the
disk and the neutron star Ðeld, turbulent di†usion of the magnetospheric Ðeld into the disk, and magnetic reconnection of the
magnetic loops present in the disk with the neutron star dipole Ðeld. The magnetic reconnection scenario has recently been
reinvestigated by & Kuijpers In their model the accretion disk is expected to be broken into small pieces at theAly (1990).
accretion radius. In fact, magnetic Ðelds in the disk conÐne the plasma into blobs carrying magnetic loops which eventually
undergo reconnections with the neutron star dipole Ðeld. The reconnection phenomena cause a sudden release of magnetic
energy in the form of Ñares, allowing the blob to be loaded onto the stellar Ðeld. The subsequent release of angular momentum
allows the blobs to spiral in toward the surface. If these Ñares are associated with the aperiodic variability, no modulation is
expected.

3. THE POWER SPECTRAL DENSITY OF AN X-RAY BINARY SIGNAL IN THE SHOT NOISE SCENARIO

Let us consider the characteristics of a signal emitted by a rotating neutron star under the hypothesis that the aperiodic
variability is caused by a shot noise process and the periodic variability is due to the stellar spin. The shot noise process arises
from the random superposition of shots characterized by a time proÐle h(t) and a constant mean rate j. The shot magnitude S
is and the power spectrum of h(t) is oH(l) o2./~=`= h(t)dt,

The most general kind of signal that we consider can be thought as composed of a background component (constant), aIbckuniform component (constant), and a shot-noise component Both the uniform component and the shot-noiseIun Isn.component can be viewed as the sum of two di†erent contributions : the localized contribution, coming from spots at the
neutron star surface (e.g., magnetic poles) and so modulated by the stellar rotation, and the di†use contribution, coming from
well above the surface and so unmodulated. The total intensity of the signal is

Itot \ Ibck] Iun,DF] Isn,DF] (Iun,LC] Isn,LC)M(t) .

The subscripts ““ DF ÏÏ and ““ LC ÏÏ indicate the di†use and the localized components, respectively. The function M(t) is a
nonnegative periodic modulation function of arbitrary shape. It represents the lighthouse e†ect modulation. Therefore, if the
occultation of the hot spot is complete, then M(t) \ 0 ; moreover, without loss of generality, its maximum value can be always
normalized to 1. The period of the modulation function is the neutron star spin period. Its Fourier expansion is M(t) \

where is the spin period. The mean intensity of each shot component is related to the shotC] ;
k
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Adopting the normalization criterion, the PSD of this signal over a time length T is computed in the Appendix.Lehay (1983)
The calculation gives the following four terms :
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where is the window function (see the Appendix). The meaning of the Ðrst term is trivial : the power at zero frequencyW
T
2 (l)

depends on the integral of the signal, i.e., on its mean intensity. The second term depends on the shape of the modulation
function. Any information that can be extracted from this term can be equally extracted by a Fourier expansion of the folded
pulse proÐle. The third term depends on the shot-noise nature of the aperiodic variability. The fourth term depends on the
coupling between the shot component and the modulation. This term consists of a series of scaled versions of the RN feature
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placed at the position of each harmonic line. The scaling factor is

r \ 1
4
Ac

k
C
B2A

1 ] jDF
jLCC2

B~1
. (3)

4. THE RED NOISE AS A SHOT NOISE PROCESS

Recent results on PSD analysis of aperiodic variability in 10 X-ray pulsars observed with the Ginga satellite (Takeshima,
Dotani, & Nagase have shown that the RN features of these objects exhibit some common features. In the log-log plane1992)
it is possible to distinguish two components : a low-frequency component, described by a power law (the slope in the log-log
plane is between [1 and [2), and a continuum with a turnover (knee). The slope after the turnover is between [2 and [1
for all sources. These features can be produced by signals composed by a random superposition of shots. This shot-noise
model has been used in interpreting the aperiodic X-ray variability of galactic sources and active galactic nuclei &(Terrell
Olsen Weisskopf, & Kahn et al. Moreover, shot-noise processes in1970 ; Terrell 1972 ; Sutherland, 1978 ; Priedhorsky 1979).
which the characteristics of each single shot vary according to a statistical distribution has been investigated by some authors
(e.g. et al. In the following we summarize the principal results of thisHalford 1968 ; Lehto 1989 ; Burderi 1993 ; Burderi 1994).
kind of analysis.

A ““monochromatic ÏÏ exponential shot-noise process is obtained from the random superposition of identical, exponentially
decaying shots occurring at a constant mean rate j. Each shot is described by the function h(t) \ U(t)E exp ([t/q), where
U(t) \ 1 for t º 0 and U(t)\ 0 otherwise. The shot magnitude S is Eq. The power spectrum of the time proÐle h(t) is

oH(l) o2\ S2
1 ] (2nql)2 .

It has a Lorentzian shape (the power spectrum of an exponential) and thus, in a log-log plot, is Ñat below the knee frequency
and has a slope [2 above that frequency. The knee frequency is related to the shot decay time q via the relation 2nqlkneeD 1.

A ““ colored ÏÏ exponential shot-noise process is determined when the decay time of the shots is varied according to a
statistical distribution, typically a power law, while the shot magnitude S and the mean shot rate j are kept constant. If this
power law is deÐned over a range of shot decay times with power index s, the shape of the resulting power[q&, q']
spectrum oH(l) o2 depends on the value of s :

1. For o s o\ 1, the oH(l) o2 is characterized by the presence of two knees :

Gl&
l'

D (2nq')~1 ,
D (2nq&)~1 .

(4)

oH(l) o2, in a log-log plot, is Ñat well below and has a slope [2 above Between the two knees the slope isl& l'.
approximatively

a \ [(s ] 1) . (5)

2. For o s o? 1, the spectrum saturates to the following limit conÐgurations : (i) Ñat below and with a slope [2 above it,l&for s ? 1 ; (ii) Ñat until and with a slope [2 above it, for s > [1.l'
In conclusion, the shape of the power spectrum of a colored exponential shot noise for o s o\ 1 can be approximated by the

expression

oH(l) o2^ b
S2

1 ] (2nq' l)a
,

where 7for l¹ l' :

for l [ l' :

a \ s ] 1 ,

a \ 2 ,

b \ 1 ;

b \ 1 ] [q'/q&]2
1 ] [q'/q&](s`1)

.

From the expressions above it is clear that, independently of the ““ colored ÏÏ nature of the shot-noise process, the low-
frequency limit of oH(l) o2 is

lim
l?0

(oH(l) o2) \ S2 . (6)

The Ñat shape of oH(l) o2 below puts a further constraint on the detectability of the coupling e†ects ; typically most of thel&harmonic power is contained in the Ðrst few harmonics, and the fact that means that the coupling e†ects are relevantr P c
k
2

only for the Ðrst harmonic lines. Thus, if signiÐcative coupling is present but the scaled versions of oH(l) o2 almostl0 > l&,
overlap, for the Ðrst harmonic lines, with the RN term making the coupling e†ects undetectable. Actually, in this case, the spin
period is longer than the lifetime of the longest shot, and the shots decay too fast to be efficiently modulated.l0~1 q',

5. THE SIMULATION OF THE LIGHT CURVE

In order to simulate the light curves we used Monte Carlo techniques to build up ““ colored ÏÏ exponential shot noise. This
signal is then added with uniform (constant) components, multiplied by the Fourier expansion of the modulation function

and then sampled and integrated over the bin size. The result is the vector of theM(t) \C ] ;
k

c
k
cos (2nkl0 t ] /

k
),
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expected counts per bin. Finally, these numbers are randomized according to Poissonian statistics (that is appropriate for
photon detection in a proportional counter). The parameters required to generate the vector of the expected counts per bin
can be grouped as

I. l0II. c
k
, /

kIII. C
sIV. q&, q',

V. S
VI. IbckVII. Iun,DF, Iun,LCVIII. jDF, jLC

To constrain the parameter space we related some of the quantities above to directly observable quantities.
I : The timing analysis gives very accurate values for l0.II : By folding the light-curve modulo an intensity pulse proÐle is obtained, where t is the spin phase. The[l0~1 IPP(t)

aperiodic variability is averaged to zero by the folding process, and the counting statistics are also improved. The values of c
kand are obtained from a Fourier expansion of the pulse proÐle./

kIII : C is constrained between a minimum value, when the minimum of the pulse proÐle is the actual minimum of the
modulation, and a maximum value when no di†use components are present and the background-subtracted pulse proÐle is
associated with the localized emission.

g
C& \

P
0

1
IPP(t)dt[ min MIPP(t)0 ¹ t¹ 1N ;

C'\
P
0

1
IPP(t)dt .

(7)

Moreover, a relation can be derived from the normalization of M(t) : the mean intensity of the modulated component is C
times its maximum intensity :

I1 tot [ (Iun,DF] jDF S ] Ibck) \ C[IPP'[ (IDF] jDF S ] Ibck)] , (8)

where IPP'\max MIPP(t)0¹ t¹ 1N.
IV : The shape of the RN feature in the PSD can give information about the decay time of the shots (via the knee

frequencies ; see and about their statistical distribution (via the slope of the RN in the log-log representation ; seeeq. [4]) eq.
[5]).

V : The low-frequency limit of the RN furnishes a constraint on the magnitude and mean arrival rate of the shots via the
relation obtained combining with the RN expression inequation (6) equation (2) :

lim
l?0

RN\ (2/I1 tot)[jDF] jLCC2]S2 . (9)

VI : From the data it is always possible to obtain or estimate Ibck.VII : An analysis of the third moment of the light curve, similar to that performed for Cygnus X-1 by et al.Sutherland
furnishes the fraction of shot noise present in the entire signal This allows to split relation (1) into(1978), 0 ¹ Fsn ¹ 1.

(1 [ Fsn)(I1 tot[ Ibck)\ Iun,DF] CIun,LC , (10)

Fsn(I1 tot[ Ibck) \ (jDF] CjLC)S . (11)

VIII Finally, in line with the physical picture developed in °° and we considered two cases :1 2,
The coupled case, when the aperiodic variability is modulated by the neutron star spin, and the uncoupled case, when the

aperiodic variability is not modulated by the spin :

coupled :
GjDF\ 0 ,
jLCD 0 ,

uncoupled :
GjDFD 0 ,
jLC \ 0 ,

We are left with Ðve unknown quantities in both the coupled and uncoupled case C, S, and orIun,DF, Iun,LC, jLC jDFrespectively, and four relations (8), (9), (10), and (11). Furthermore, the parameter C can only range between the limits deÐned
by Adopting C as a variable, light curves are simulated for di†erent values spanning the available range. Theequation (7).
PSDs of the simulated light curves are computed and compared with the PSD from the data calculating the residuals. As is
clear from the broadening e†ect is PC~2. This strong dependence allows to determine if the coupling is presentequation (3),
and, in this case, to calculate C minimising the residuals near the harmonic lines.

6. THE CASE OF SMC X-1

SMC X-1 is a high-mass X-ray binary in the Small Magellanic Cloud. The spin period of the neutron star is 0.717 s.
Ground-based observations identiÐed its companion with an early-type B0Ib supergiant (see, e.g., Paradijs & McClintockvan

The system shows D0.6 day X-ray eclipses. The orbit is almost circular (eD 710~4) with period of 3.892 days and a1995).
projected semimajor axis of 53.46 lt-s. Adopting a distance of D65 kpc, the X-ray luminosity is D5 ] 1038 ergs s~1. The
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Japanese X-ray satellite Ginga observed this source with its proportional counters (Large Area Counters [LAC]) in the energy
range 2.3È37.2 keV. We analyzed the observations made in 1989 on July 29 and 31 and on August 1 searching for the
signature of the coupling e†ects. In order to have the maximum number of photons we produced a light curve adding all the
energy channels together. The temporal bin size is 62.5] 10~3 s. The whole data set was divided into intervals containing
8192 points each (corresponding to a time length of T \ 512 s), and a fast Fourier transform was performed on each of these
intervals obtaining 25 PSDs. The PSDs were normalized according to the at al. criterion. These PSDs wereLehay (1983)
added together in order to improve the statistics. A white noise (WN) component with power equal to 1.93 was subtracted
from the PSD. The WN power is di†erent from the theoretical value of 2, expected from the Lehay normalization, because of
dead-time e†ects. The resulting PSD is shown in An inspection of this Ðgure allows one to identify few componentsFigure 1.
in the PSD:

A low frequency noise (LFN). The LFN is Ñat between the minimum frequency of the PSD (1.95312510~3 Hz) and the
turnover frequency of a few 10~2 Hz. Then it decreases as a power law (power index D[0.75).

A quasi-periodic oscillation component centered at D10~2 Hz and with FWHMD 10~2 Hz (Takeshima 1994).
Five harmonic lines (HL) equally spaced from 1.394700 Hz up to 6.973501 Hz.
A high frequency noise component (HFN) is also evident between D4 ] 10~1 Hz and the Nyquist frequency (8 Hz), i.e.,

roughly in the zone where the harmonic lines are present. This noise component smoothly links to the LFN. at el.Takeshima
have described this noise component as a ““ continuum with turnover ÏÏ almost always present in the PSD of X-ray(1992)

pulsators.
Since in our analysis we are only interested in the study of the aperiodic and periodic components, the whole data set was

divided in intervals containing 1024 points each (corresponding to a time of T \ 64 s). T is chosen in order to have the
minimum frequency in the PSD (1/64 s~1) just above the QPO frequency. A fast Fourier transform was performed on each of
these intervals, obtaining 325 PSDs that were added together and white noise subtracted, resulting in the PSD shown in

Our idea is that the coupling e†ects are so relevant that the whole HFN could result from the coupling e†ects of theFigure 2.
LFN with the periodic modulation. If this is the case, the description of the aperiodic features can be reduced to the presence
of the LFN only. In principle, a similar coupling of the QPO feature with the periodic modulation could contribute to the
HFN. However, this noise has the shape of a single broad feature extending for few Hz (see Therefore, the QPO is tooFig. 3).

FIG. 1.ÈPSD of the source SMC X-1 resulting from the sum of 25 PSDs performed on data sets of 512 s each



FIG. 2.ÈPSD of the source SMC X-1 resulting from the sum of 325 PSDs performed on data sets of 64 s each. The points below 0.1 Hz are a†ected by the
presence of the QPO and are not shown.

TABLE 1

PARAMETERS USED FOR SMC X-1 SIMULATIONS

Parameter Coupled Uncoupled

Number of PSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6100
Time length of each PSD (s) . . . . . . . . . . . . . . . . . . . . . . . . . 64
Background intensity (photons s~1) . . . . . . . . . . . . . . . . 40
Nonshot di†use intensity (photons s~1) . . . . . . . . . . . . 197 138
Di†use j (shots s~1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1.38
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.52
Nonshot hot-spot intensity (photons s~1) . . . . . . . . . . 84 211
Hot-spot j (shots s~1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.73 0
Shot amplitude (photons) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 43
Power-law index of the shot distribution law . . . . . . [0.3
Minimum q of the shoots (s) 8 ] 10~5
Maximum q of the shots (s) . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Number of coherent harmonics . . . . . . . . . . . . . . . . . . . . . 5
Fundamental frequency (Hz) . . . . . . . . . . . . . . . . . . . . . . . . . 1.4085
Amplitude of the fundamental harmonic . . . . . . . . . . . 63.17
Phase of the fundamental harmonic (deg) . . . . . . . . . 19.63
Amplitude of the Ðrst harmonic . . . . . . . . . . . . . . . . . . . . . 64.15
Phase of Ðrst harmonic (deg) . . . . . . . . . . . . . . . . . . . . . . . . 63.93
Amplitude of the second harmonic . . . . . . . . . . . . . . . . . 28.12
Phase of second harmonic (deg) . . . . . . . . . . . . . . . . . . . . . 293.90
Amplitude of the third harmonic . . . . . . . . . . . . . . . . . . . . 17.50
Phase of third harmonic (deg) . . . . . . . . . . . . . . . . . . . . . . . 253.85
Amplitude of the fourth harmonic . . . . . . . . . . . . . . . . . . 10.32
Phase of fourth harmonic (deg) . . . . . . . . . . . . . . . . . . . . . . 180.00
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FIG. 3.ÈT op panels : PSDs obtained from the simulated light curves of the source SMC X-1 for the uncoupled (left) and coupled (right) models. Bottom
panels : the residual (in units of sigma) resulting from the subtraction of the simulated PSDs from the PSD of The points below 0.1 Hz are are notFig.2.
shown. The small residuals still present at the base of the Ðrst harmonic line in the case of coupling could be ascribed to a coupling of the QPO feature with
the periodic modulation.

narrow (FWHM D 10~2 Hz) to give such a smooth broad bump from the blending of the QPO coupling humps correspond-
ing to subsequent harmonics. The LFN feature, in contrast, is broader (FWHM D 0.16 Hz) and decreases more slowly (power
indexD [0.75) than the Gaussian QPO. In line with this we neglect, in the following, any possible contribution to the HFN
arising from QPO coupling e†ects. However, a small QPO coupling component seems to be present (seeFig. 3).

We used the simulation method described in the previous section to analyze these data. While the HFN component is
evident in the residuals of the uncoupled case this feature is absent in the residuals of the coupled case of(Fig. 3a), Figure 3b.
The parameters used for these simulations are listed in Table 1.

7. DISCUSSION AND CONCLUSIONS

From a comparison of the residuals in both the coupled and the uncoupled case some conclusions can be derived :
The ““ colored ÏÏ exponential shot-noise model proposed is quite capable of describing the aperiodic variability associated

with the LFN observed in this source. The LFN can be represented by the shot-noise model if we exclude the Ðrst few PSD
channels around lD 1.6] 10~2 Hz, where contamination e†ects from the QPO present in the real data can signiÐcantly
distort the shape of the LFN.

The HFN is described by the coupling of the shot noise with the periodic modulation. In principle, the introduction of an
extra noise component like the ““ continuum with turnover ÏÏ proposed by et al. is also capable of describingTakeshima (1992)
the HFN quite well. However, there are two points that make the coupling scenario more attractive. First, the shape of this
continuum with turnover is the same of the LFN. This suggests a common origin for both these components, as the coupling
scenario predicts. Second, if the LFN is coupled with the HL, one naturally expects that the scaled versions of the LFN are
placed at the base of each harmonic line present in the PSD. The consequent blend of these features along the whole system of
harmonics mimics a continuum with turnover and naturally places the turnover frequency close to the Ðrst harmonic line
where is actually observed. In this sense it is possible that one of the results reported by et al. is biased byTakeshima (1992)
what is discussed above. In fact, analyzing the PSDs of 10 X-ray pulsars observed by the Ginga satellite, they found a very
strong one-to-one correlation between the turnover frequency of the HFN and the pulsation frequency in all the pulsars of
their sample. In the uncoupled case the origin of this correlation is unclear. On the other hand, the coupling scenario naturally
predicts this correlation. A similar conclusion has been recently reached by & Stella The noise model adoptedLazzati (1996).
in this paper is a useful mathematical tool to represent the aperiodic variability observed in the X-ray pulsators. However,
even considering that a shot-noise process causes the aperiodic variability in these sources, it is quite clear that the ““ colored ÏÏ
exponential shot noise oversimpliÐes the physics of the problem. Nevertheless, it is worth stressing that the coupling e†ects
discussed in this paper are quite independent of the nature of the process that originates the aperiodic variability. This is
shown in the CPL equation in that contains directly the rescaled version of the RN. Moreover, the implication ofequation (2)
this coupling is straightforward : independent of the nature of the physical processes that causes the aperiodic variability, the
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energy release associated with this phenomenon seems to occur close enough to the surface of the neutron star to be a†ected
by the lighthouse e†ect that determines the pulsed modulation. In this sense a scenario in which, in line with the Aly &
Kuijpers model described in the shot-noise emission is associated with magnetospheric Ñares caused by magnetic° 2,
reconnection all around the magnetosphere cannot work for the origin of the aperiodic variability in this source. In this case,
in fact, one expects that the shot component should be totally uncoupled from any periodic modulation. Threading of a
inhomogeneous Ñow by the Ðeld (e.g., via Kelvin-Helmholtz instabilities) and subsequent accretion of the blobs onto the polar
caps seems a more promising mechanism for the origin of the red noise.

L. B. is supported by the PPARC rolling grant for theoretical astrophysics to the Astronomy Group at the University of
Leicester. This research was supported by the Ministero della Ricerca ScientiÐca e Tecnologica (MURST), and by the Italian
Space Agency (ASI).

APPENDIX

THE PSD OF A MODULATED SHOT NOISE SIGNAL

The shot noise is the result of a Poisson process with mean occurrence rate j,

z8 (j, t) \ ;
i

d(t [ t8
i
)

(here the tilde symbol indicates a random variable ; convolved with response functions of arbitrary shape :Papoulis 1984) h
i
(t)

SN3 \ z8 (t) \ h
i
(t)\ ;

i
h
i
(t [ t8

i
) ,

where the symbol \ denotes convolution (in the following, for simplicity, we will write SN instead of Only a fewSN3 ).
restrictions are imposed on the response functions by the physical nature of the process that generates the shot noise :

There is a general condition of integrability / h
i
(t)dt \ S

i
#i.

The functions are nonnegative (the intensity of the signal cannot be less than zero).h
i
(t)

Each must satisfy the causality condition This means that each can ““ exist ÏÏ starting from a givenh
i
(t) h

i
(t) \ 0 #t \ t6 . h

i
(t)

time Each of these response functions is uncorrelated with each other, and the shot component depends linearly on them.t6 .
Because of the linearity of the convolution and the lack of correlation between the various response functions, the power
spectrum of such a signal is identical, on average, to the power spectrum of a signal obtained from the convolution of t)z8 (j,
with a function h(t) the power spectrum of which oH(l) o2 results from averaging the power spectrum of each response function

with an appropriate weight function. Thus in this Appendix we consider the shot noise asoH
i
(l) o2

SN\ z8 (t) \ h(t) \ ;
i

h(t [ t8
i
) .

The function h(t) is related to the mean intensity of the shot component via the relation where S \ / h(t)dt.I1 SN I1 SN \ jS,
The mean power spectrum of this signal (according to the normalization adopted by can be computed in thePapoulis 1984)

framework of the stochastic processes calculus (Papoulis 1984) :

PSMSN(t)N\ j2 oH(0) o2 d(l) ] j oH(l) o2 ,

where, by deÐnition, oH(0) o\ / h(t)dt and d(l) is the Dirac d-function.
The periodic modulation function M(t) is a train of identical pulse proÐles of given period This means that M(t) can bel0~1.

expanded in a Fourier series :

M(t) \ C] ;
k

c
k

cos (2nl0 kt ] /
k
) .

This modulation function represents the lighthouse e†ect on the emission of the source, so M(t) º 0#t and max MM(t@), t@ ½ [t,
The power spectrum is computed from its deÐnition of square modulus of the Fourier transform FT over at] l0~1)N\ 1.

time interval T ] O. We made the approximation that the PS is the sum of the PS of each Fourier component separately ;
i.e., we neglect the cross terms that originate performing the square modulus of the Fourier transform. We have (neglecting the
negative frequency terms)

PSMM(t)N^ C2 lim
T?=

1
T

oFTMBOX(1, T )N(l[ 0) o2];
k

Ac
k
2
B2

lim
T?=

1
T

oFTMBOX(1, T )N(l[ l
k
) o2 ,

where the Fourier transforms are computed at the frequencies l\ (l[ 0) and respectively, and the boxl
k
\ kl0, l\ (l [ l

k
),

function is deÐned as

BOX(1, T ) \
71 ,
1/2 ,
0 ,

o t o\ T /2 ,
o t o\ T /2 ,
o t o[ T /2 ,
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and the square modulus of its Fourier transform is

oFTMBOX(1[ T )N(l) o2\ T 2 sin2 (nlT )
(nlT )2 \ T 2W

T
2(l) ;

is called the window function. Thus we haveW
T
2(l)

PSMM(t)N^ C2 lim
T?=

T W
T
2(l)] ;

k

Ac
k
2
B2

lim
T?=

T W
T
2(l[ l

k
)

Let us consider a shot noise coupled with a periodic modulation function SN(t) ] M(t). The Fourier transform of this signal
is FTMSN(t) ] M(t)N\FTMSN(t)N \ FTMM(t)N. Performing the convolution with the Fourier transform of the modu-
lation function and neglecting the negative frequency terms, we have

FTMSN(t) ] M(t)N\ CFTMSN(t)N(l) ] ;
k

c
k
2
FTMSN(t)N(l\ l

k
) .

In computing the PS of the signal we neglect the cross terms, i.e. we compute the PS of each term separately. So we have

PSMSN(t) ] M(t)N^ C2 lim
T?=

1
T

oFTMSN(t)N \ FTMBOX(1, T )N(l) o2

] ;
k

Ac
k
2
B2

lim
T?=

1
T

oFTMSN(t)N \ FTMBOX(1, T )N(l[ l
k
) o2 .

Introducing the computed expression for the mean value of the PS of a shot noise process, we have

PSMSN(t) ] M(t)N^ C2j2 oH(0 )o2 d(l) ] C2j oH(l) o2] ;
k

Ac
k
2
B2

lim
T?=

1
T

oFTMSN(t)N \ FTMBOX(1, T )N(l[ l
k
) o2 .

Consider now a signal of the type deÐned in i.e.,° 3,

Itot \ Ibck] Iun,DF] Isn,DF] (Iun,LC] Isn,LC)M(t) .

We consider the di†use (DF) and localized (LC) shot noise components as signals characterized by di†erent arrival rates jDFand and the same response functions h(t) the power spectrum of which is oH(l) o2. In calculating the PS of this signal wejLC,
neglect, when a pair of terms are uncorrelated, the cross products that average to zero. One of the possible deÐnitions for the
distribution d(l) is so adopting this support for the d functions that appear in the expressions above, we canlim

T?= T W
T
2(l),

group all the terms as follows :

PS0\ I1 tot2 ] lim
T?=

T W
T
2(l) ,
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k
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[Iun,LC ] jLC oH(0) o]2] lim
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T
2(l[ l

k
) ,

PSrednoise\ jDF oH(l) o2] jLCC2 oH(l) o2 ,

PScoupling\ ;
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2
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jLC oH(l[ l
k
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t

r

t

t

t

s

where

I1 tot \ Ibck] Iun,DF] jDF oH(0) o] CIun,LC ] CjLC oH(0) o

is the mean intensity of the signal. The term the ““ zero frequency power,ÏÏ is only dependent on the total intensity of thePS0,signal. The term is the family of harmonic lines ; the term is the RN feature produced by the shot noisePSlines PSrednoiseprocess ; Ðnally, the term arises from the coupling of the shot-noise component with the periodic modulationPScouplingfunction. This last term is the superposition, at each harmonic, of a rescaled version of the square modulus of the Fourier
transform of the response function involved in the shot-noise process. We stress the fact that only the oH(l) o2 appears in the
last term. This implies that di†erent kinds of signal having the same oH(l)o2 would show the same coupling terms.

Let us now compute the value of the squared modulus of the Ðnite Fourier transform, i.e., the of the signal. We startPSD
Tfrom the deÐnition of PS

PSMItot(t)N\ lim
T?=

C1
T

oFTMItot(t)N \ FTMBOX(1, T )N o2
D

^PS0]PSlines]PSrednoise]PScoupling .

To obtain the Ðnite power spectrum we have to change from the to a signal of Ðnite length. For the two termsPS
T
, lim

T?=and some changes occurs in the function oH(l) o2. In particular, the new function is a broaderPSrednoise PScoupling oH(l)
T

o2
version of the old one. The broadening arises from the fact that the window function, which in the inÐnite power spectrum is a
d-function, is now of the type T W (l). Since H(l) is already a broadband feature, this convolution gives negligible broadening if



No. 2, 1997 HARMONIC COUPLING OF RED NOISE IN X-RAY PULSARS 953

the time length T is not too short. So we can assume

oH(l)
T

o2^ oH(l) o2 .

In the remaining two terms, and the only modiÐcation we have is to eliminate the Thus we deÐnePS0 PSlines, lim
T?=.

PS0T \ I1 tot2 [T W
T
2(l)] ,

PSlines T\ ;
k

Ac
k
2
B2

[Iun,LC] jLC oH(0) o]2] T W
T
2(l[ l

k
) ,

gPSrednoise T \ jDF oH(l) o2] jLC C2 oH(l) o2 ,

PScoupling T\ ;
k

Ac
k
2
B2

jLC oH(l[ l
k
) o2 .

With these deÐnitions we have

o a
T
(l) o2\ T PS

T
MI(t)N\ oFTMI(t)N \ FTMBOX(1, T )N o2 ^ T [PS0T ]PSlines T]PSrednoise T]PScoupling T] .

Finally, adopting the LehayÏs normalization factor with we have2/[a
T
(l\ 0)], a

T
(l\ 0) \ I1 totT ,

PSD
T
(l) \ 2

a
T
(l\ 0)

o a
T
(l) o2^

2
I1 tot

[PS0T ]PSlines T]PSrednoise T]PScoupling T]\ P0 ] HL ] RN] CPL .

We observe that the strength of the two terms and that relate to coherent processes grows linearly with T , whilePS0T PSlines Tthe strength of the aperiodic processes and that relate to intrinsically incoherent processes does notPSrednoise,T PScoupling,Tgrow with the signal duration.
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