107 research outputs found

    Identifying algal symbionts in lichen symbioses

    Get PDF
    Lichens are a ubiquitous terrestrial symbiosis of fungi with photoautotrophic microorganisms. The identification of the hosted photoautotrophs is notoriously difficult. Molecular data to clarify evolutionary relationships on the involved algal and cyanobacterial lineages are accumulating, but the assignment to species is challenging for various reasons. One of the challenges is the limited knowledge on the alpha diversity of photoautotrophs. New lineages are being discovered with increasing amounts of sequencing. Identification tools could incorporate these aspects, by routinely updating the assignment process. We propose the establishment of a classification tool using algal sequence data from public databases

    Phylogenetic placement of the lichenicolous, anamorphic genus Lichenodiplis and its connection to Muellerella-like teleomorphs

    Get PDF
    Lichenicolous fungi are a specialized group of taxa which inhabit lichens and develop diverse degrees of specificity and parasitic behaviour towards their hosts. They are recognized only by their phenotypic symptoms and sexual or asexual spore-producing structures on the lichen thalli. Only recently, molecular data and culture dependent approaches have helped in uncovering the species diversity and in verifying the phylogenetic position and anamorpheteleomorph relationships of some taxa. Here, we studied the phylogenetic placement of representative taxa of two lichenicolous genera, the coelomycete Lichenodiplis and the ascomycete Muellerella. We obtained molecular data for three nuclear and mitochondrial loci (28S, 18S, and 16S), both from fresh collected specimens and culture isolates. Our multilocus phylogeny places Lichenodiplis and Muellerella samples in one monophyletic, fully supported clade, sister to Epibryon (Epibryaceae) in Chaetothyriales (Eurotiomycetes). Morphological analyses of axenically cultured fungi show the formation of conidiomata and conidiospores in both Lichenodiplis and Muellerella isolates. We suggest that the species Lichenodiplis lecanorae and Muellerella atricola represent, respectively, the anamorphic and teleomorphic stages of the same fungus and discuss their relationships with the other fungal families in Chaetothyriomycetidae

    Lichen and lichenicolous fungal communities tested as suitable systems for the application of cross-taxon analysis

    Get PDF
    Lichens are outstanding examples of fungal symbioses, forming long-lived structures, the lichen thalli in which a multiplicity of other microorganisms are hosted. Among these, microfungi seem to establish diverse trophic relationships with their lichen hosts. The most specialised of these fungi are the parasitic lichenicolous fungi. of which the diversity has hardly been explained as a proxy for the diversity of lichen species. Here, we used an exemplar dataset of a well-studied alpine lichen community composed of 63 lichen and 41 lichenicolous fungal species and tested it to verify the strength of the co-occurrences of the two species groups with predictive co-correspondence analyses. The results showed that the distribution of lichen abundances affect the abundance and variation of lichenicolous fungi and support our hypothesis to use lichens as surrogate for lichenicolous fungi in the surrogacy analysis

    Life on top: cryptoendolithic ascomycetes and microalgae isolated from over 6000 m altitude

    Get PDF
    Rocks are among the oldest terrestrial niches hosting a multiplicity of life forms, of which diversity has been only partially uncovered. Endolithic metacommunities comprise all major groups of microorganisms, such as chemo-organotrophic, chemo-lithotrophic and phototrophic, represented by bacteria, microalgae and microfungi. Their diversity is often difficult to describe and may remain underestimated. Furthermore, knowledge about the diversity of microorganisms colonizing rocks in peculiar niches is even poorer due to the difficulty to retrieve environmental specimens. Here, we report the phylogenetic and phenotypic characterization of a few endolithic fungi and algae isolated from rock fragments collected at high elevation, i.e., on the top of two mountains over 6000 m altitude, Muztagh Ata (China) and Cerro Mercendario (Argentina). The identity of the strains was confirmed by sequencing the nuclear ITS and LSU, the plastidial rbcL loci and by morphological analysis. Three fungal strains belonging to the class Dothideomycetes and one algal strain belonging to the genus Trebouxia were isolated from Muztagh Ata, while six fungal strains belonging to the order Chaetothyriales and four algal strains belonging to the genus Myrmecia were isolated from Cerro Mercedario. The detected species diversity is discussed in an evolutionary and ecological context

    Extremotolerant fungi from alpine rock lichens and their phylogenetic relationships.

    Get PDF
    Fungi other than the lichen mycobiont frequently co-occur within lichen thalli and on the same rock in harsh environments. In these situations dark-pigmented mycelial structures are commonly observed on lichen thalli, where they persist under the same stressful conditions as their hosts. Here we used a comprehensive sampling of lichen-associated fungi from an alpine habitat to assess their phylogenetic relationships with fungi previously known from other niches. The multilocus phylogenetic analyses suggest that most of the 248 isolates belong to the Chaetothyriomycetes and Dothideomycetes, while a minor fraction represents Sordariomycetes and Leotiomycetes. As many lichens also were infected by phenotypically distinct lichenicolous fungi of diverse lineages, it remains difficult to assess whether the culture isolates represent these fungi or are from additional cryptic, extremotolerant fungi within the thalli. Some of these strains represent yet undescribed lineages within Chaethothyriomycetes and Dothideomycetes, whereas other strains belong to genera of fungi, that are known as lichen colonizers, plant and human pathogens, rock-inhabiting fungi, parasites and saprotrophs. The symbiotic structures of the lichen thalli appear to be a shared habitat of phylogenetically diverse stress-tolerant fungi, which potentially benefit from the lichen niche in otherwise hostile habitats

    ITS1 metabarcoding highlights low specificity of lichen mycobiomes at local scale

    Get PDF
    As self-supporting and long-living symbiotic structures, lichens provide a habitat for many other organisms beside the traditionally considered lichen symbionts\u2014the myco- and the photobionts. The lichen-inhabiting fungi either develop diagnostic phenotypes or occur asymptomatically. Because the degree of specificity towards the lichen host is poorly known, we studied the diversity of these fungi among neighbouring lichens on rocks in an alpine habitat. Using a sequencing metabarcoding approach, we show that lichen mycobiomes clearly reflect the overlap of multiple ecological sets of taxa, which differ in their trophic association with lichen thalli. The lack of specificity to the lichen mycobiome is further supported by the lack of community structure observed using clustering and ordination methods. The communities encountered across samples largely result from the subsampling of a shared species pool, in which we identify three major ecological components: (i) a generalist environmental pool, (ii) a lichenicolous/endolichenic pool and (iii) a pool of transient species. These taxa majorly belong to the fungal classes Dothideomycetes, Eurotiomycetes and Tremellomycetes with close relatives in adjacent ecological niches. We found no significant evidence that the phenotypically recognized lichenicolous fungi influence the occurrence of the other asymptomatic fungi in the host thalli. We claim that lichens work as suboptimal habitats or as a complex spore and mycelium bank, which modulate and allow the regeneration of local fungal communities. By performing an approach that minimizes ambiguities in the taxonomic assignments of fungi, we present how lichen mycobiomes are also suitable Targets for improving bioinformatic analyses of fungal metabarcoding

    Effects of growth media on the diversity of culturable fungi from lichens.

    Get PDF
    Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds

    muellerella a lichenicolous fungal genus recovered as polyphyletic within chaetothyriomycetidae eurotiomycetes ascomycota

    Get PDF
    AbstractMolecular data and culture-dependent methods have helped to uncover the phylogenetic relationships of numerous species of lichenicolous fungi, a specialized group of taxa that inhabit lichens and have developed diverse degrees of specificity and parasitic behaviors. The majority of lichenicolous fungal taxa are known in either their anamorphic or teleomorphic states, although their anamorph-teleomorph relationships have been resolved in only a few cases. The pycnidium-forming Lichenodiplis lecanorae and the perithecioid taxa Muellerella atricola and M. lichenicola were recently recovered as monophyletic in Chaetothyriales (Eurotiomycetes). Both genera are lichenicolous on multiple lichen hosts, upon which they show a subtle morphological diversity reflected in the description of 14 species in Muellerella (of which 12 are lichenicolous) and 12 in Lichenodiplis. Here we focus on the teleomorphic genus Muellerella and investigate its monophyly by expanding the taxon sampling to other species occurring on diverse lichen hosts. We generated molecular data for two nuclear and one mitochondrial loci (28S, 18S and 16S) from environmental samples. The present multilocus phylogeny confirms the monophyletic lineage of the teleomorphic M. atricola and M. lichenicola with their L. lecanorae-like anamorphs, but places the rest of the Muellerella species studied in two different monophyletic lineages with strong support. The first, Muellerella spp. 1, is nested within some new lineages of black fungi isolated from different epilithic lichen thalli, while the second, Muellerella spp. 2, is closely related to the Verrucariales. Based on these results, we reappraise the phylogenetic placement of Muellerella and suggest its polyphyly within Chaetothyriomycetidae

    Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi

    Get PDF
    Background and Aims The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear howthis variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, .300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts. \u2020 Methods Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains. \u2020 Key Results Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineageswere also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed. \u2020Conclusions Lowselectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi

    Molecular analyses uncover the phylogenetic position of the lichenized hyphomycetous genus Cheiromycina.

    Get PDF
    The genus Cheiromycina is one of the few genera of lichenized hyphomycetes for which no sexual reproductive stages have been observed. The genus includes species from boreal to temperate regions of the Northern Hemisphere where it is found growing on bark or wood. Congeners in Cheiromycina are characterized by a noncorticate thallus, nearly immersed in the substrate and presenting powdery unpigmented sporodochia, and containing chlorococcoid photobionts. The relationships of members of Cheiromycina with other fungi are not known. Here we inferred the phylogenetic placement of Cheiromycina using three loci (nuSSU, nuLSU, and mtSSU) representing C. flabelliformis, the type species for the genus, C. petri, and C. reimeri. Our results revealed that the genus Cheiromycina is found within the family Malmideaceae (Lecanorales) where members formed a monophyletic clade sister to the genera Savoronala and Malmidea. This phylogenetic placement and the relationships of Cheiromycina with other lichenized hyphomycetous taxa are here discussed
    corecore