29 research outputs found

    How Much Recurrent Outbreaks of the Moon Jellyfish May Impact the Dynamics of Bacterial Assemblages in Coastal Lagoons?

    Get PDF
    The moon jellyfish Aurelia coerulea (Scyphozoa) is one of the most common and largest jellyfish inhabiting coastal lagoons, confined bays, and marinas of temperate and subtropical coastal waters. The annual population dynamics of A. coerulea along with some bacterial parameters (bacterial size and biomass, total coliforms, faecal coliforms, intestinal enterococci, culturable Vibrio spp., and culturable bacteria at 37 degrees C), sea surface temperature (SST), salinity, and an array of nutrients (ammonia, nitrites, nitrates, phosphates, silicates, total nitrogen, and total phosphorus) were assessed in the Varano lagoon (Adriatic Sea) that is subject to anthropogenic pollution. Statistical analyses revealed that jellyfish outbreaks and their consequent biomass deposition significantly correlated to seawater temperature, total nitrogen, phosphates, and ammonia concentrations while negative correlations appeared with nitrite and nitrate concentrations. In addition, bacterial biomass and Vibrio abundance correlated with each other and temperature, jellyfish density, and total nitrogen. These findings suggest that environmental changes could trigger the occurrence of jellyfish bursts in the lagoon which, in turn, may act as one of the central drivers of processes regulating some bacterial components. The positive relationship between jellyfish flush-and-crash dynamics and SST suggests that ongoing global warming will seemingly increase jellyfish outbreaks

    Photocontrolled wettability changes in polymer microchannels doped with photochromic molecules

    Get PDF
    The authors demonstrate the possibility to control the fluid flow inside microfluidic networks by photoresponsive capillaries. The approach relies on the use of photochromic molecules undergoing reversible changes in their polarity when irradiated with light of specific wavelength, thus varying the wettability of cyclic olefin copolymer microchannels. The realized photoresponsive elements exhibit a decrease up to 20° between the water contact angles of the native and the irradiated surfaces, which could be exploited for enhancing the penetration flow rate of fluids inside microfluidic channels up to 25%. The photocontrollable microfluidic circuitry presents on-off valve behavior, allowing or blocking liquid filling processes on the base of optical control, thus allowing one to manipulate liquid flow within microfluidic networks without mechanical actuation parts

    How Much Recurrent Outbreaks of the Moon Jellyfish May Impact the Dynamics of Bacterial Assemblages in Coastal Lagoons?

    No full text
    The moon jellyfish Aurelia coerulea (Scyphozoa) is one of the most common and largest jellyfish inhabiting coastal lagoons, confined bays, and marinas of temperate and subtropical coastal waters. The annual population dynamics of A. coerulea along with some bacterial parameters (bacterial size and biomass, total coliforms, faecal coliforms, intestinal enterococci, culturable Vibrio spp., and culturable bacteria at 37 °C), sea surface temperature (SST), salinity, and an array of nutrients (ammonia, nitrites, nitrates, phosphates, silicates, total nitrogen, and total phosphorus) were assessed in the Varano lagoon (Adriatic Sea) that is subject to anthropogenic pollution. Statistical analyses revealed that jellyfish outbreaks and their consequent biomass deposition significantly correlated to seawater temperature, total nitrogen, phosphates, and ammonia concentrations while negative correlations appeared with nitrite and nitrate concentrations. In addition, bacterial biomass and Vibrio abundance correlated with each other and temperature, jellyfish density, and total nitrogen. These findings suggest that environmental changes could trigger the occurrence of jellyfish bursts in the lagoon which, in turn, may act as one of the central drivers of processes regulating some bacterial components. The positive relationship between jellyfish flush-and-crash dynamics and SST suggests that ongoing global warming will seemingly increase jellyfish outbreaks

    A comprehensive UHPLC-MS/MS screening method for the analysis of 98 New Psychoactive Substances and related compounds in human hair

    No full text
    none9noIn this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the targeted analysis of 98 New Psychoactive Substances (NPS) from the hair matrix. The monitored compounds included various chemical classes (7 phenethylamines, 10 tryptamines, 18 cathinones, 24 synthetic opioids, and 38 synthetic cannabinoids) with emphasis given to newly emerged NPS. The method employed a direct extraction process through the incubation of hair samples (25 mg) and internal standards with M3® reagent at 100 °C for 60 min, followed by extract purification through acid and basic liquid-liquid micro-extraction (LLME). Extracted compounds were analyzed through LC-MS/MS system operating in multiple reaction monitoring mode. NPS were separated in 9.5 min with a Poroshell 120 EC-C18 column (2.7 μm, 4.6 × 50 mm) using a gradient eluting mobile phase composed of water and acetonitrile/water (95:5) both containing 0.1 % of formic acid. The developed and validated method shows a good precision (≤ 15 %), linearity (R2 between 0.993 and 0.999), selectivity, and sensitivity (LOD: 0.6-10.3 pg mg-1 and LOQ: 2.1-34.4 pg mg-1). The method showed also reduced matrix effect and acceptable recovery for most of the targeted compounds. Our results showed that this method is suitable for quantifying NPS in hair matrix and could be employed in the context of routine analyses in analytical laboratories.mixedNzekoue, Franks Kamgang; Agostini, Marco; Verboni, Michele; Renzoni, Caterina; Alfieri, Lucia; Barocci, Simone; Ricciutelli, Massimo; Caprioli, Giovanni; Lucarini, SimoneNzekoue, Franks Kamgang; Agostini, Marco; Verboni, Michele; Renzoni, Caterina; Alfieri, Lucia; Barocci, Simone; Ricciutelli, Massimo; Caprioli, Giovanni; Lucarini, Simon

    Nutrition in Patients with Inflammatory Bowel Diseases: A Narrative Review

    No full text
    Inflammatory bowel diseases (IBD) affect the gastrointestinal tract: they include Crohn’s disease (CD) and ulcerative colitis (UC). Each has a different phenotypic spectrum, characterized by gastrointestinal and extra-intestinal manifestations. People living with IBD are very interested in diet, but little is known about the impact of diet on these patients; no guidelines are available yet. In this review, we analyze the dietary patterns of patients with IBD and the approach to the choices of foods both in adults and pediatric patients. Very often, IBD patients report an intentional avoidance of gluten to manage the disease; furthermore, a proportion of IBD patients believe that dairy products worsen their symptoms and that avoidance may help the disease. They have a low compliance with the Mediterranean Diet, which is considered to have potential benefits but is little used in practice. In conclusion, the review underscores the pivotal role of nutritional counselling in IBD patients, and the importance of future clinical studies to evaluate the beneficial effects of dietary recommendations in the management of IBD

    Modulation of high impulsivity and attentional performance in rats by selective direct and indirect dopaminergic and noradrenergic receptor agonists

    Get PDF
    RATIONALE: Impulsivity is associated with a number of psychiatric disorders, most notably attention deficit/hyperactivity disorder (ADHD). Drugs that augment catecholamine function (e.g. methylphenidate and the selective noradrenaline reuptake inhibitor atomoxetine) have clinical efficacy in ADHD, but their precise mechanism of action is unclear. OBJECTIVE: The objective of this study is to investigate the relative contribution of dopamine (DA) and noradrenaline (NA) to the therapeutic effects of clinically effective drugs in ADHD using rats selected for high impulsivity on the five-choice serial reaction time task (5CSRTT). METHODS: We examined the effects of direct and indirect DA and NA receptor agonists and selective DA and NA reuptake inhibitors in rats showing high and low levels of impulsivity on the 5CSRTT (designated high impulsive ‘HI’ and low impulsive ‘LI’, respectively). Drugs were administered by systemic injection in a randomized, counterbalanced manner. RESULTS: Low doses of quinpirole (a D2/D3 agonist) and sumanirole (a D2 agonist) selectively reduced impulsivity on the 5CSRTT, whilst higher doses resulted in increased omissions and slower response latencies. The NA reuptake inhibitor, atomoxetine, and the alpha-2 adrenoreceptor agonist, guanfacine, dose dependently decreased premature responding. The dopaminergic reuptake inhibitor GBR-12909 increased impulsivity, whereas the nonselective DA and NA reuptake inhibitor methylphenidate had no significant effect on impulsive responses in HI and LI rats. CONCLUSIONS: These findings indicate that high impulsivity can be ameliorated in rats by drugs that mimic the effects of DA and NA, just as in ADHD, and that activation of D2/3 receptors selectively decreases high impulsivity on the 5CSRTT
    corecore