7 research outputs found

    Alpha-tricalcium phosphate- and tetracalcium phosphate/dicalcium phosphate-based dual setting

    No full text
    “Dual-setting” calcium phosphate cements (DS-CPCs), characterized by a polymerization reaction that proceeds along with the conventional hydraulic setting, were prepared and studied. Acrylamide (AA), 2-hydroxyethyl methacrylate (HEMA), and N-vinyl-2-pyrrolydone (VP) in 5, 10, and 20 wt./vol.-% were added to the liquid of α- tricalcium phosphate (α-TCP) and tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/ DCPA) conventional cements. N,N’-methylenebisacrylamide was used as cross linking agent. N,N,NÂŽ,NÂŽ-tetramethylethylendiamine in the liquid, and ammonium persulfate in the powder, were employed as polymerization catalyst and initiator, respectively. Diametral tensile strength (DTS), setting time, phase composition, conversion rate, and microstructure of the DS-CPC were compared with those of non-added cements. The DTS increased 22 % for α-TCP and 85 % for TTCP/DCPA DS-CPCs by adding 20 wt./vol.-% AA. The HEMA and VP had no positive effect on DTS. The extent of the hydraulic setting reaction for α-TCP DS-CPC was only slightly decreased by the addition of 20 wt./vol.-% of AA to the mixing liquid

    Alpha-tricalcium phosphate- and tetracalcium phosphate/dicalcium phosphate-based dual setting

    No full text
    “Dual-setting” calcium phosphate cements (DS-CPCs), characterized by a polymerization reaction that proceeds along with the conventional hydraulic setting, were prepared and studied. Acrylamide (AA), 2-hydroxyethyl methacrylate (HEMA), and N-vinyl-2-pyrrolydone (VP) in 5, 10, and 20 wt./vol.-% were added to the liquid of α- tricalcium phosphate (α-TCP) and tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/ DCPA) conventional cements. N,N’-methylenebisacrylamide was used as cross linking agent. N,N,NÂŽ,NÂŽ-tetramethylethylendiamine in the liquid, and ammonium persulfate in the powder, were employed as polymerization catalyst and initiator, respectively. Diametral tensile strength (DTS), setting time, phase composition, conversion rate, and microstructure of the DS-CPC were compared with those of non-added cements. The DTS increased 22 % for α-TCP and 85 % for TTCP/DCPA DS-CPCs by adding 20 wt./vol.-% AA. The HEMA and VP had no positive effect on DTS. The extent of the hydraulic setting reaction for α-TCP DS-CPC was only slightly decreased by the addition of 20 wt./vol.-% of AA to the mixing liquid

    Titanium Coating with Hydroxyapatite and Chitosan Doped with Silver Nitrate

    No full text
    <div><p>Biomaterials are effective alternatives for tissue substitution, including the bone tissue, since they do not pose risks of transmission of diseases or immune rejection. Nowadays, there is an interest in new materials capable of being associated with other substances which favor bone formation, especially natural biopolymers, in particular chitosan, which may present a potential for repairing bone defects and forms films that adhere to metal surfaces. Titanium, despite being a material greatly employed in implants because of its excellent physical properties, does not present bioactive characteristics, making it necessary to use methods of surface modification to enhance its biological response, favoring bone formation. This work aims at studying commercially pure titanium (cp-Ti) coating with chitosan using the biomimetic method and the evaluation of the effects of process variables as substrate surface conditions. Subsequently, the incorporation of AgNO3 was studied and its effects on corrosion resistance were evaluated. To evaluate the coating process, several tests were conducted, such as scanning electron microscopy, X-ray diffraction and infrared spectroscopy. From the results obtained, the efficacy of the chitosan film in inhibiting the corrosion of the metals is concluded, which was the target of this study, thus justifying its use for osseointegration and in several implants.</p></div

    Comparison of crystallinity between natural hydroxyapatite and synthetic cp-Ti /HA coatings

    No full text
    Commercial purity titanium (cp-Ti), and some of its alloys are important materials in the medical field because of their excellent biocompatibility and mechanical properties. Recently a simple chemical method to induce bioactivity in these inert metallic materials was reported. In this work, the biomimetic chemical process has been used to modify the surface of cp-Ti with the formation of a deposit layer of apatite (a calcium phosphate compound). The main purpose was to study the influence of heat treatment on changes in crystallinity in the deposited phases. X-ray diffraction analysis and scanning electron microscopy showed that the apatite coatings heat treated between 400 and 600 °C were less crystalline, similar to biological apatites. Upon heat treatment at temperatures above 700 °C, the apatite coatings appeared more crystalline, and were a mixture of hydroxyapatite, octacalcium phosphate and magnesium phosphate
    corecore