985 research outputs found

    Early handling and repeated cross-fostering have opposite effect on mouse emotionality

    Get PDF
    Early life events have a crucial role in programming the individual phenotype and exposure to traumatic experiences during infancy can increase later risk for a variety of neuropsychiatric conditions, including mood and anxiety disorders. Animal models of postnatal stress have been developed in rodents to explore molecular mechanisms responsible for the observed short and long lasting neurobiological effects of such manipulations. The main aim of this study was to compare the behavioral and hormonal phenotype of young and adult animals exposed to different postnatal treatments. Outbred mice were exposed to (i) the classical Handling protocol (H: 15 min-day of separation from the mother from day 1 to 14 of life) or to (ii) a Repeated Cross-Fostering protocol (RCF: adoption of litters from day 1 to 4 of life by different dams). Handled mice received more maternal care in infancy and showed the already described reduced emotionality at adulthood. Repeated cross fostered animals did not differ for maternal care received, but showed enhanced sensitivity to separation from the mother in infancy and altered respiratory response to 6% CO2 in breathing air in comparison with controls. Abnormal respiratory responses to hypercapnia are commonly found among humans with panic disorders (PD), and point to RCF-induced instability of the early environment as a valid developmental model for PD. The comparisons between short-and long-term effects of postnatal handling vs. RCF indicate that different types of early adversities are associated with different behavioral profiles, and evoke psychopathologies that can be distinguished according to the neurobiological systems disrupted by early-life manipulation

    Ethical issues associated with in-hospital emergency from the medical emergency team's perspective: a national survey

    Get PDF
    Medical Emergency Teams (METs) are frequently involved in ethical issues associated to in-hospital emergencies, like decisions about end-of-life care and intensive care unit (ICU) admission. MET involvement offers both advantages and disadvantages, especially when an immediate decision must be made. We performed a survey among Italian intensivists/anesthesiologists evaluating MET's perspective on the most relevant ethical aspects faced in daily practice

    A perturbed MicroRNA expression pattern characterizes embryonic neural stem cells derived from a severe mouse model of spinal muscular atrophy (SMA)

    Get PDF
    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA

    Adalimumab efficacy in enteropathic spondyloarthritis: A 12-mo observational multidisciplinary study

    Get PDF
    AIM To report adalimumab (Ada) efficacy on articulargastrointestinal disease and health-related quality of life (HRQoL) in patients with enteropathic spondyloarthritis (ES). METHODS A cohort of 52 patients with ES was evaluated in the departments of gastroenterology and internal medicine. At baseline, all patients underwent assessment by an integrated gastro-rheumatologic evaluation of articular and gastrointestinal activity, as well patient reported outcomes (PROs) of the HRQoL questionnaires. After this integrated evaluation and following a specific working flowchart, the Ada anti-tumor necrosis factor (TNF)-inhibitor was assigned to a cohort of 30 patients and its clinical efficacy was evaluated at baseline and after 6-mo and 12-mo treatment by the following tests: (1) Ankylosing Spondylitis Disease Activity Score- C-Reactive Protein (ASDAS-CRP); Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Metrology Index (BASMI) for articular activity; (2) Inflammatory Bowel Disease Questionnaire (IBDQ), Crohn's Disease Activity Index (CDAI) and partial Mayo (pMayo) score for gastrointestinal symptoms and activity; and (3) Health Assessment Questionnaire (HAQ), Patient Global Assessment (PGA) and Short Form-36 health survey (SF-36) questionnaires for PROs of the HRQoL. RESULTS Integrated evaluation and management of the patients affected by ES, carried out simultaneously by a gastroenterologist and a rheumatologist, allowed clinicians to choose the optimal therapeutic strategy. In a cohort of 30 ES patients affected by active articular and gastrointestinal disease, or axial active articular inflammation, Ada led to fast and sustained improvement of both articular and gastrointestinal disease activities. In fact, all the clinimetric evaluation tests exploring articular or gastrointestinal activity, as well as all the HRQoL scores, showed a significant improvement having been achieved at the earliest (6-mo) assessment. This important clinical improvement was maintained at the 12-mo follow-up. Importantly, global and gastrointestinal quality of life significantly correlated with articular disease activity, providing evidence to support that the integrated evaluation is the best option to manage patients with ES. CONCLUSION Ada treatment, upon multidisciplinary (gastrorheumatologic) evaluation, significantly improves both articular and gastrointestinal inflammation, thereby improving the HRQoL in patients affected by ES

    A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11

    Get PDF
    Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11 (+/-) spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11 (-/-) background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination

    Molecular phylogenetics and mitochondrial evolution

    Get PDF
    The myth of a "typical" mitochondrial genome (mtDNA) is a rock-hard belief in the field of genetics, at least for the animal kingdo

    Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera

    Get PDF
    The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae

    Molecular systematics and phylogenetics of the spider genus Mastigusa Menge, 1854 (Araneae, Cybaeidae)

    Get PDF
    The palearctic spider genus Mastigusa Menge, 1854 is characterized by a remarkable morphology and wide ecological variability, with free-living, cave dwelling and myrmecophile populations known. This genus has a long and tangled taxonomic history and was placed in different families in the past, all belonging to the “marronoid clade”, an informal grouping of families characterized by the lack of strong synapomorphies. Three species are currently recognized, but their identity and circumscription has been long debated. A molecular approach was never applied for trying to solve these uncertainties, and doubts still remain both about its phylogenetic placement and about the taxonomic status of the described species. For the first time the genus Mastigusa is included in a molecular phylogenetic analysis and strong support is found for its placement within the family Cybaeidae, in sister relationship with the genus Cryphoeca Thorell, 1870. An analysis of Mastigusa populations spanning across the distribution range of the genus identifies a high and previously overlooked genetic diversity, with six distinct genetic lineages showing a strong geographic pattern. Divergence times between Mastigusa and its sister genus and between the distinct Mastigusa lineages are estimated, and the groundwork is laid for a taxonomic revision of the species belonging to the genus

    Gene transcriptional profiles in gonads of Bacillus taxa (Phasmida) with different cytological mechanisms of automictic parthenogenesis

    Get PDF
    The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan

    New association between red wood ant species (Formica rufa group) and the myrmecophilic spiders Mastigusa arietina and Thyreosthenius biovatus

    Get PDF
    Ants belonging to the Formica rufa species group, counting 10 representatives in Europe, are often referred to as red wood ants (RWAs). These dominant, mound building species are known to host in their nests an extremely diverse fauna of associated myrmecophilic arthropods, among which are the two W-Palaearctic spider species Mastigusa arietina (Thorell 1871) and Thyreosthenius biovatus (O. Pickard-Cambridge 1875). The actual host range of these spiders within the Formica rufa group is little known, due to the taxonomic uncertainties that have characterized RWAs in the past. We conducted a large-scale survey for assessing the occurrence of both spider species in association with different RWAs, with a focus on an accurate identification of the ant species. We recorded co-occurrence data for 5 European representatives of the Formica rufa group, and we reported for the first time on the co-occurrence of M. arietina with Formica aquilonia Yarrow 1955, Formica lugubris Zetterstedt 1838 and Formica paralugubris Seifert 1996, and of T. biovatus with F. aquilonia. We found no association between the rate of presence/absence of the two spiders and host ant species or sampling localities, which suggests a non-selective exploitation of RWA hosts by the two myrmecophilic spiders
    corecore