21 research outputs found

    Nutrient fluxes on an intertidal mudflat in Marennes-Oléron Bay, and influence of the emersion period

    No full text
    Fluxes of nutrients (NH4+, NO3-, PO43- and Si(OH)4) were studied on an intertidal mudflat in Marennes-Oléron Bay, France, at two different seasons and at different times of the emersion period. Fluxes through the sediment-water interface were both calculated from vertical profiles of nutrient concentration in pore-water (diffusive fluxes, JD) and measured in light and dark benthic mini-chambers (measured fluxes, J0). Results indicate that ammonia was mainly released in summer while nitrate was mainly taken up in late winter. This uptake from the overlying water was probably due to the coupling of nitrification-denitrification within the sediment. The J0/JD ratio further indicates that bioturbation likely enhanced ammonia release in summer. Concerning phosphate, the comparison of diffusive and measured fluxes suggests that PO43- could be assimilated by the biofilm in winter while it was released in summer at a high rate due to both bioturbation and desorption because of the relative anoxic conditions in summer. Silica was always released by the sediment, but at a higher rate in summer. Statistically significant differences in measured fluxes were detected in dark chambers at different times of low tide, thus suggesting a short-term variability of fluxes. Microphytobenthos preferred ammonia to nitrate, but assimilated nitrate when ammonia was not available. It also turned out that benthic cells could be limited in nitrogen during low tide in late winter. In summer, ammonia was not limiting and microphytobenthic activity significantly decreased the measured flux of NH4+ in the middle of low tide when its photosynthetic capacity was highest

    Interacting effects of <I>Hydrobia ulvae</I> bioturbation and microphytobenthos on the erodibility of mudflat sediments

    No full text
    International audienceMicrophytobenthos-macrofauna sediment interactions and their effects on sediment erodability were examined in laboratory experiments. Sediment beds were manipulated in a tidal mesocosm to produce diatom mats in exponential or in stationary phases of development after 6, 8 or 11 d of culture. These sediment beds were used in flume experiments to investigate the influence of bioturbation by the gastropod Hydrobia ulvae on both sediment and pigment resuspension as a function of the physiological state of the microphytobenthic mats. In most experiments, only a surface layer was resuspended. A model was used to analyse in detail the contribution of each variable to this surface-layer erosion. Bioturbation was the major factor controlling resuspension, and its extent was influenced by sediment density and the growth stage of the microphytobenthos. The amount and extent of bioturbation is assumed to be influenced by sediment density and chlorophyll a content. Snail bioturbation can, in turn, influence the amount of microalgal resuspension. The quantity of pigment resuspended due to bioturbation increased by a factor of 15 when the diatom mats were in exponential growth stages. However, as the age of the mat increased, the influence of bioturbation on pigment resuspension declined. When the mats became senescent, Type I erosion occurred with erosion rates high enough to obscure any effects of bioturbation. To summarise, we assume that there are 2 causes of microphytobenthos resuspention, depending on the physiological state of the mat: (1) in the exponential phase, bioturbation substantially affects the resuspension of pigments which are present in the surface layer (the biogenic fluff layer) and (2) in the senescent phase, the increase in bed roughness and water content renders the mat fragile, leading to bed erosion

    The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oléron Bay, France

    No full text
    International audienceA comparative study between waterlogged and reflooded intertidal sediments was undertaken in March and June 1999 through statistical analysis of selected sediment parameters (biota, salinity, O2, Eh), pool sizes and benthic fluxes of nutrients (NH4+, NO2−, NO3−) and nitrification rates. In March samples, absence of polychaetes and oligochaetes from upper sediment horizons were due to erosional events sweeping away surface sediments. Presence of richer annelid assemblages in June samples indicated more stable hydrodynamic conditions that favoured the development of benthic microalgae biofilms. Dewatering of sediments during a 3-day emersion period promoted a salinity rise on top layers, migration of pore water ions towards the sediment surface, and created sediment fissures that accelerated water exchange on reflooding. Reflooded and waterlogged sediment systems were comparable with respect to the release of NH4+ to overlying water but were different with respect to nitrification rates. Sediment-water NH4+ fluxes were higher (P=0.011) in March (3.3 mmol m−2 day−1) compared to June (1.4 mmol m−2 day−1) due to higher macrofauna biomasses and lower benthic microalgae concentrations in March samples. Potential nitrification rates (range from 19 to 60 mmol NO3− m−2 day−1) were not statistically different between March and June. A thinner oxic layer in reflooded compared with waterlogged systems reflects a decrease of O2 diffusion into sediment at high salinities which resulted in the fall of the actual nitrification rates (P<0.05). Our data suggest that long term dessication of intertidal sediments may depress the nitrification process at the ecosystem level

    Coping styles in European sea bass: The link between boldness, stress response and neurogenesis

    No full text
    Coping styles consist of a coherent set of individual physiological and behavioral differences in stress responses that are consistent across time and context. Such consistent inter-individual differences in behavior have already been shown in European sea bass (Dicentrarchus labrax), but the associated mechanisms are still poorly understood. Here, we combine physiological measurements with individual behavioral responses in order to characterize coping styles in fish. Fish were tagged and placed in a tank for group risk-taking tests (GRT) at 8 months of age to evaluate boldness using the proxy latency of leaving a sheltered area towards an open area. A subsample of these fish were individually challenged 16 months later using an open field test (OFT), in which the boldness was assessed after being placed in a shelter within an open arena. Latency to exit the shelter, time spent in the shelter, and distance travelled were recorded for this purpose. The blood and brain were then collected to evaluate plasma cortisol concentration and neurotransmitter levels (dopamine, norepinephrine, serotonin, and related metabolites), as well as brain transcription of key genes involved in stress axis regulation (gr1, gr2, mr, crf), neurogenesis (neurod1, neurod2, pcna), and neuronal development (egr1). Fish acting bolder in the GRT were not necessarily those acting bolder in the OFT, highlighting the relatively low consistency across different types of tests performed with a 16-months interval. There was, however, a significant correlation between stress markers and boldness. Indeed, mRNA levels of mr, crf, gr2, egr1, and neurod2, as well as norepinephrine levels were higher in shy than bold fish, whereas brain serotonergic activity was lower in shy fish. Overall, our study highlights the fact that boldness was not consistent over time when testing context differed (group vs. alone). This is in agreement with previous literature suggesting that social context play a key role in boldness measurement and that the particular life history of each individual may account in shaping the personality fate of a fish

    Effects of water viscosity upon ventilation and metabolism of a flatfish, the common sole Solea solea (L.)

    No full text
    International audienceThe French Atlantic coast contains large highly productive intertidal mudflats that are colonised by juveniles of numerous flatfish species, including the common sole (Solea solea, L.). These ecosystems are also heavily exploited by the shellfish farming industry. Intensive bivalve culture is associated with substantial biodeposition (1–6 t-dw ha−1 day−1), which directly or indirectly contributes to increase exopolysaccharide (EPS) concentrations at the interface between water column and seabed. EPS are long-chain molecules organised into colloids, which influence rheological properties of water, particularly viscosity. Increased water viscosity had consequences for ventilatory activity of juvenile flatfish, whereby the minimal pressure required to ventilate the medium increases directly with EPS concentration. Moreover, the critical EPS concentration ([EPS]crit) at which water was no longer able to flow through the branchial basket ranged from almost nil to over 30 mg l−1, depending on species and size. [EPS]crit was lower in small individuals and individuals from species with high metabolic rates (turbot and plaice). These differences may depend upon gill and bucco-branchial cavity morphometrics. The ventilatory workload of sole increased with viscosity to a maximum at 2 mg EPS l−1. Viscosity might, therefore, be a limiting factor for flatfish post larvae, which colonise the intertidal mudflats, depending upon their size and species. EPS concentrations in the field can reach 15 mg l−1. A selective effect is conceivable but remains to be estimated in the field

    Microplastics exposures of fish: internalization and effects on behavior and growth

    No full text
    International audienceAwareness of the presence of microplastics, i.e. plastic particles ranging in size from 1 ÎŒm to 5 mm, in marine and freshwaters has recently risen but detection and quantification is challenging. Furthermore, whether they pose a risk to aquatic organisms is not yet clear. Fish, for example, have been demonstrated to ingest microplastics particles but the link between quantification of uptake and impact assessment has not yet been made. In this context, we are exploring methods for particles quantification upon feeding juvenile fish with regular food and microplastics and assess whether exposure impacts behavior and growth. For quantification of uptake, we hypothesized that it is possible to analyze the fish tissue by flow cytometry in combination with viSNE, which allows the 2D clustering of particles with different features according to the fluorescence measured. Exposure experiments were carried out for up to three weeks, using different types of microplastic particles and a wide concentration range. In the flow, when particles were mixed with fish tissue, flow cytometry/viSNE was able to differentiate particles natures, numbers and sizes. About 10% of added particles were internalized by the fish from all particles that floated or settled on the bottom. Particles ingestion resulted in a slight impact on behavior. Yet, floating particles were massively incorporated by the fish and significant numbers remained even after 24h of depuration. Based on this, we are currently exploring if continuous feeding with microparticles contaminated food has consequences on juvenile fish growth. Taken together, our study demonstrates the power and limits of flow cytometry/viSNE for microplastics quantification in a complex biological matrix like fish.The setup could be extended to other types and forms of microplastics in different environmental matrices. Moreover, our study sheds light on ecological consequences that microplastics exposure might have on fish
    corecore