4,692 research outputs found

    Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond

    Full text link
    We demonstrate the application of two-photon absorption transient current technique to wide bandgap semiconductors. We utilize it to probe charge transport properties of single-crystal Chemical Vapor Deposition (scCVD) diamond. The charge carriers, inside the scCVD diamond sample, are excited by a femtosecond laser through simultaneous absorption of two photons. Due to the nature of two-photon absorption, the generation of charge carriers is confined in space (3-D) around the focal point of the laser. Such localized charge injection allows to probe the charge transport properties of the semiconductor bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the generated charge, the electrical field of the diamond bulk was mapped at different depths and compared to an X-ray diffraction topograph of the sample. Measurements utilizing this method provide a unique way of exploring spatial variations of charge transport properties in transparent wide-bandgap semiconductors.Comment: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters and may be found at https://doi.org/10.1063/1.509085

    Use of intensive rearing systems as back‐up for coastal lagoon aquaculture: an experience with eels, Anguilla anguilla L., in the Comacchio lagoons

    Get PDF
    . The possibility of using eels from intensive rearing ponds to restock natural basins has been investigated by comparing growth, survival and rate of yellow-to-silver metamorphosis of 'wild type' eels and of eels from an intensive rearing pond. A total of 2243 marked eels were released into a closed natural environment of 22ha; 1254 were wild type (average length 45·6 ± 9·0cm), and 989 from an intensive rearing pond, split by a mechanical grader in two groups. The first group was made of 617 well-growing eels (44·9 ± 3·0cm), the second one of 372 smaller eels (36·9 ± 4·3cm) which had not adapted to the artificial conditions. The starting size being equal the animals grew to the same extent; in some cases the animals previously adapted to the artificial pond grew better than the wild type. The rate of metamorphosis from yellow to silver eel was 28·4% for the wild type eels and 22% for the others, although the latter became mostly silver males. Survival of the wild type eels (starting with the 35-cm size class and covering the period from April to December) was calculated by mark-recapture at approximately 98·6%. For the eels previously well adapted to the intensive rearing pond it was only 85%, indicating some difficulty in competing in the natural environment. The good growth shown by the smaller eels, with a survival of about 90%, would seem to indicate that these animals might be effectively used for restocking purposes, thus favouring an integration between the intensive ponds and the extensive environments

    Combustion Modeling Approach for the Optimization of a Temperature Controlled Reactivity Compression Ignition Engine Fueled with Iso-Octane

    Get PDF
    In this study, an innovative Low Temperature Combustion (LTC) system named Temperature Controlled Reactivity Compression Ignition (TCRCI) is presented, and a numerical optimization of the hardware and the operating parameters is proposed. The studied combustion system aims to reduce the complexity of the Reaction Controlled Compression Ignition engine (RCCI), replacing the direct injection of high reactivity fuel with a heated injection of low reactivity fuel. The combustion system at the actual state of development is presented, and its characteristics are discussed. Hence, it is clear that the performances are highly limited by the actual diesel-derived hardware, and a dedicated model must be designed to progress in the development of this technology. A Computational Fluid Dynamics (CFD) model suitable for the simulation of this type of combustion is proposed, and it is validated with the available experimental operating conditions. The Particle Swarm Optimization (PSO) algorithm was integrated with the Computational Fluid Dynamic (CFD) software to optimize the engine combustion system by means of computational simulation. The operating condition considered has a relatively high load with a fixed fuel mass and compression ratio. The parameters to optimize are the piston bowl geometry, injection parameters and the boosting pressure. The achieved system configuration is characterized by a wider piston bowl and injection angle, and it is able to increase the net efficiency of 3% and to significantly reduce CO emissions from 0.407 to 0.136 mg

    Effect of stem cell source on long-term chimerism and event-free survival in children with primary immunodeficiency disorders after fludarabine and melphalan conditioning regimen

    Get PDF
    BACKGROUND: Reduced-intensity conditioning (RIC) regimens are increasingly being used in the transplantation of patients with primary immunodeficiency disorders (PIDs), but there are no large studies looking at long-term lineage-specific chimerism. OBJECTIVES: We sought to analyze long-term chimerism and event-free survival in children undergoing transplantation for PIDs using RIC with fludarabine and melphalan (Flu/Melph) and to study the effect of donor type and stem cell source. METHODS: One hundred forty-two children underwent transplantation with RIC by using Flu/Melph and for PIDs by using bone marrow (n = 93) or peripheral blood stem cells (PBSCs; n = 49). Donors were matched unrelated donors (n = 72), mismatched unrelated donors (n = 37), matched sibling donors (n = 14), matched family donors (n = 12), and mismatched family donors (n = 7). RESULTS: Overall survival at a median follow-up of 7.5 years was 78%, irrespective of stem cell source or donor type. When bone marrow was used as the stem cell source, 26% of patients ended up with very low levels of donor chimerism (50% donor chimerism) in all lineages. CONCLUSIONS: On the basis of our experience, we would suggest that PBSCs should be the stem cell source of choice in children with PIDs undergoing transplantation with Flu/Melph RIC from a matched donor source. This is most likely to ensure sustained high-level donor chimerism

    Integrated measures of lead and manganese exposure improve estimation of their joint effects on cognition in Italian school-age children

    Get PDF
    Every day humans are exposed to mixtures of chemicals, such as lead (Pb) and manganese (Mn). An underappreciated aspect of studying the health effects of mixtures is the role that the exposure biomarker media (blood, hair, etc.) may play in estimating the effects of the mixture. Different biomarker media represent different aspects of each chemical's toxicokinetics, thus no single medium can fully capture the toxicokinetic profile for all the chemicals in a mixture. A potential solution to this problem is to combine exposure data across different media to derive integrated estimates of each chemical's internal concentration. This concept, formalized as a multi-media biomarker (MMB) has proven effective for estimating the health impacts of Pb exposure, but may also be useful to estimate mixture effects, such as the joint effects of metals like Pb and Mn, while factoring in how the association changes based upon the biomarker media. Levels of Pb and Mn were quantified in five media: blood, hair, nails, urine, and saliva in the Public Health Impact of Metals Exposure (PHIME) project, a study of Italian adolescents aged 10–14 years. MMBs were derived for both metals using weighted quantile sum (WQS) regression across the five media. Age-adjusted Wechsler Intelligence Scale for Children (WISC) IQ scores, measured at the same time as the exposure measures, were the primary outcome and models were adjusted for sex and socioeconomic status. The levels Pb and Mn were relatively low, with median blood Pb of 1.27 (IQR: 0.84) μg/dL and median blood Mn of 1.09 (IQR: 0.45) μg/dL. Quartile increases in a Pb-Mn combination predicted decreased Full Scale IQ of 1.9 points (95% CI: 0.3, 3.5) when Pb and Mn exposure levels were estimated using MMBs, while individual regressions for each metal were not associated with Full Scale IQ. Additionally, a quartile increase in the WQS index of Pb and Mn, measured using MMBs, were associated with reductions in Verbal IQ by 2.8 points (1.0, 4.5). Weights that determine the contributions of the metals to the joint effect highlighted that the contribution of the Pb-Mn was 72–28% for Full Scale IQ and 42–58% for Verbal IQ. We found that the joint effects of Pb and Mn are strongly affected by the medium used to measure exposure and that the joint effects of the Pb and Mn MMBs on cognition were the stronger than any individual biomarker. Thus, increase power and accuracy for measuring mixture effects compared to individual biomarkers. As the number of chemicals in mixtures increases, appropriate biomarker selection will become increasingly important and MMBs are a natural way to reduce bias in such analyses

    Salivary Metabolomic Signatures and Body Mass Index in Italian Adolescents: A Pilot Study

    Get PDF
    Context: Obesity surveillance is scarce in adolescents, and little is known on whether salivary metabolomics data, emerging minimally invasive biomarkers, can characterize metabolic patterns associated with overweight or obesity in adolescents. Objective: This pilot study aims to identify the salivary molecular signatures associated with body mass index (BMI) in Italian adolescents. Methods: Saliva samples and BMI were collected in a subset of n = 74 young adolescents enrolled in the Public Health Impact of Metal Exposure study (2007-2014). A total of 217 untargeted metabolites were identified using liquid chromatography-high resolution mass spectrometry. Robust linear regression was used to cross-sectionally determine associations between metabolomic signatures and sex-specific BMI-for-age z-scores (z-BMI). Results: Nearly 35% of the adolescents (median age: 12 years; 51% females) were either obese or overweight. A higher z-BMI was observed in males compared to females (P = .02). One nucleoside (deoxyadenosine) and 2 lipids (18:0-18:2 phosphatidylcholine and dipalmitoyl-phosphoethanolamine) were negatively related to z-BMI (P < .05), whereas 2 benzenoids (3-hydroxyanthranilic acid and a phthalate metabolite) were positively associated with z-BMI (P < .05). In males, several metabolites including deoxyadenosine, as well as deoxycarnitine, hyodeoxycholic acid, N-methylglutamic acid, bisphenol P, and trigonelline were downregulated, while 3 metabolites (3-hydroxyanthranilic acid, theobromine/theophylline/paraxanthine, and alanine) were upregulated in relation to z-BMI (P < .05). In females, deoxyadenosine and dipalmitoyl-phosphoethanolamine were negatively associated with z-BMI while deoxycarnitine and a phthalate metabolite were positively associated (P < .05). A single energy-related pathway was enriched in the identified associations in females (carnitine synthesis, P = .04). Conclusion: Salivary metabolites involved in nucleotide, lipid, and energy metabolism were primarily altered in relation to BMI in adolescents

    Heavy Metals in Soil and Salad in the Proximity of Historical Ferroalloy Emission

    Get PDF
    Emissions of manganese (Mn), lead (Pb), iron (Fe), zinc (Zn), copper (Cu) from ferro-alloy operations has taken place in Valcamonica, a pre-Alp valley in the province of Brescia, Italy, for about a century until 2001. Metal concentrations were measured in the soil of local home gardens and in the cultivated vegetables. Soil analysis was carried out using a portable X-Ray Fluorescence (XRF) spectrometer in both surface soil and at 10 cm depth. A subset of soil samples (n = 23) additionally was analysed using the modified BCR sequential extraction method and ICP-OES for intercalibration with XRF (XRF Mn = 1.33 * total OES Mn – 71.8; R = 0.830, p < 0.0001). Samples of salads (Lactuca sativa and Chichorium spp.) were analyzed with a Total Reflection X-Ray Fluorescence (TXRF) technique. Vegetable and soil metal measurements were performed in 59 home gardens of Valcamonica, and compared with 23 gardens from the Garda Lake reference area. Results indicate significantly higher levels of soil Mn (median 986 ppm vs 416 ppm), Pb (median 46.1 ppm vs 30.2 ppm), Fe (median 19,800 ppm vs 13,100 ppm) in the Valcamonica compared to the reference area. Surface soil levels of all metals were significantly higher in surface soil compared to deeper soil, consistent with atmospheric deposition. Significantly higher levels of metals were shown also in lettuce from Valcamonica for Mn (median 53.6 ppm vs 30.2) and Fe (median 153 vs 118). Metals in Chichorium spp. did not differ between the two areas. Surface soil metal levels declined with increasing distance from the closest ferroalloy plant, consistent with plant emis- sions as the source of elevated soil metal levels. A correlation between Mn concentrations in soil and lettuce was also observed. These data show that historic ferroalloy plant activity, which ended nearly a decade before this study, has contributed to the persistence of increased Mn levels in locally grown vegetables. Further research is needed to assess whether this increase can lead to adverse effects in humans and plants especially for Mn, an essential element that can be toxic in humans when exceeding the homeostatic ranges
    corecore