124 research outputs found

    Volumetric analysis of carotid plaque components and cerebral microbleeds: a correlative study

    Get PDF
    PURPOSE: The purpose of this work was to explore the association between carotid plaque volume (total and the subcomponents) and cerebral microbleeds (CMBs). MATERIALS AND METHODS: Seventy-two consecutive (male 53; median age 64) patients were retrospectively analyzed. Carotid arteries were studied by using a 16-detector-row computed tomography scanner whereas brain was explored with a 1.5 Tesla system. CMBs were studied using a T2*-weighted gradient-recalled echo sequence. CMBs were classified as from absent (grade 1) to severe (grade 4). Component types of the carotid plaque were defined according to the following Hounsfield unit (HU) ranges: lipid less than 60 HU; fibrous tissue from 60 to 130 HU; calcification greater than 130 HU, and plaque volumes of each component were calculated. Each carotid artery was analyzed by 2 observers. RESULTS: The prevalence of CMBs was 35.3%. A statistically significant difference was observed between symptomatic (40%) and asymptomatic (11%) patients (P value = .001; OR = 6.07). Linear regression analysis demonstrated an association between the number of CMBs and the symptoms (P = .0018). Receiver operating characteristics curve analysis found an association between the carotid plaque subcomponents and CMBs (Az = .608, .621, and .615 for calcified, lipid, and mixed components, respectively), and Mann-Whitney test confirmed this association in particular for the lipid components (P value = .0267). CONCLUSIONS: Results of this study confirm the association between CMBs and symptoms and that there is an increased number of CMBs in symptomatic patients. Moreover, we found that an increased volume of the fatty component is associated with the presence and number of CMBs

    Multimodality Quantitative Assessments of Myocardial Perfusion Using Dynamic Contrast Enhanced Magnetic Resonance and 15O-Labeled Water Positron Emission Tomography Imaging

    Get PDF
    Kinetic modeling of myocardial perfusion imaging data allows the absolute quantification of myocardial blood flow (MBF) and can improve the diagnosis and clinical assessment of coronary artery disease (CAD). Positron emission tomography (PET) imaging is considered the reference standard technique for absolute quantification, whilst oxygen-15 (15O)-water has been extensively implemented for MBF quantification. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has also been used for MBF quantification and showed comparable diagnostic performance against (¹⁵ O)-water PET studies. We investigated for the first time the diagnostic performance of two different PET MBF analysis softwares PMOD and Carimas, for obstructive CAD detection against invasive clinical standard methods in 20 patients with known or suspected CAD. Fermi and distributed parameter modeling-derived MBF quantification from DCE-MRI was also compared against (15O)-water PET, in a subgroup of six patients. The sensitivity and specificity for PMOD was significantly superior for obstructive CAD detection in both per vessel (0.83, 0.90) and per patient (0.86, 0.75) analysis, against Carimas (0.75, 0.65) and (0.81, 0.70), respectively. We showed strong, significant correlations between MR and PET MBF quantifications (r = 0.83 - 0.92). However, DP and PMOD analysis demonstrated comparable and higher hemodynamic differences between obstructive versus (no, minor, or non)-obstructive CAD, against Fermi and Carimas analysis. Our MR method assessments against the optimum PET reference standard technique for perfusion analysis showed promising results in per segment level and can support further multimodality assessments in larger patient cohorts. Further MR against PET assessments may help to determine their comparative diagnostic performance for obstructive CAD detection

    Modelling [18F]LW223 PET data using simplified imaging protocols for quantification of TSPO expression in the rat heart and brain

    Get PDF
    PURPOSE: To provide a comprehensive assessment of the novel 18 kDa translocator protein (TSPO) radiotracer, [(18)F]LW223, kinetics in the heart and brain when using a simplified imaging approach. METHODS: Naive adult rats and rats with surgically induced permanent coronary artery ligation received a bolus intravenous injection of [(18)F]LW223 followed by 120 min PET scanning with arterial blood sampling throughout. Kinetic modelling of PET data was applied to estimated rate constants, total volume of distribution (V(T)) and binding potential transfer corrected (BP(TC)) using arterial or image-derived input function (IDIF). Quantitative bias of simplified protocols using IDIF versus arterial input function (AIF) and stability of kinetic parameters for PET imaging data of different length (40–120 min) were estimated. RESULTS: PET outcome measures estimated using IDIF significantly correlated with those derived with invasive AIF, albeit with an inherent systematic bias. Truncation of the dynamic PET scan duration to less than 100 min reduced the stability of the kinetic modelling outputs. Quantification of [(18)F]LW223 uptake kinetics in the brain and heart required the use of different outcome measures, with BP(TC) more stable in the heart and V(T) more stable in the brain. CONCLUSION: Modelling of [(18)F]LW223 PET showed the use of simplified IDIF is acceptable in the rat and the minimum scan duration for quantification of TSPO expression in rats using kinetic modelling with this radiotracer is 100 min. Carefully assessing kinetic outcome measures when conducting a systems level as oppose to single-organ centric analyses is crucial. This should be taken into account when assessing the emerging role of the TSPO heart-brain axis in the field of PET imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05482-1

    Plaque imaging volume analysis: technique and application

    Get PDF
    The prevention and management of atherosclerosis poses a tough challenge to public health organizations worldwide. Together with myocardial infarction, stroke represents its main manifestation, with up to 25% of all ischemic strokes being caused by thromboembolism arising from the carotid arteries. Therefore, a vast number of publications have focused on the characterization of the culprit lesion, the atherosclerotic plaque. A paradigm shift appears to be taking place at the current state of research, as the attention is gradually moving from the classically defined degree of stenosis to the identification of features of plaque vulnerability, which appear to be more reliable predictors of recurrent cerebrovascular events. The present review will offer a perspective on the present state of research in the field of carotid atherosclerotic disease, focusing on the imaging modalities currently used in the study of the carotid plaque and the impact that such diagnostic means are having in the clinical setting

    Surgical resection is superior to TACE in the treatment of HCC in a well selected cohort of BCLC-B elderly patients—A retrospective observational study

    Get PDF
    Simple Summary Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Liver transplantation (LT) and surgical resection (SR) are currently the primary treatments with curative intent. Nevertheless, more than two-thirds of patients are elderly and, therefore, excluded from LT; while, according to the Barcelona Clinic Liver Cancer (BCLC) system, SR should only be offered to a small group of patients with early stage HCC. The identification in stage B of an intermediate subgroup of patients that fulfill the criteria for surgery may play an important role in the implementation of potentially curative treatments. Hepatocellular carcinoma (HCC) usually develops in cirrhotic liver, with high recurrence rates. However, considering its increasing detection in non-cirrhotic liver, the choice of treatment assumes particular relevance. This study aimed to investigate outcomes of patients among BCLC stages and enrolled for surgical resection (SR) according to a more complex evaluation, to establish its safety and efficacy. A total of 186 selected HCC patients (median age 73.2 yrs), submitted to SR between January 2005 and January 2021, were retrospectively analyzed. Of which, 166 were staged 0, A, B according to the BCLC system, while 20 with a single large tumor (>5 cm) were classified as stage AB. No perioperative mortality was recorded; complications occurred in 48 (25.80%) patients, and all but two were Clavien-Dindo grade I-II. Median follow-up was 9.2 years. Subsequently, 162 recurrent patients (87,1%) were selected for new treatments. Comparable overall survival rates (OS) were observed at 1, 3, 5, and 10 years in 0, A, B and AB stages (p = 0.2). Eventually, the BCLC-B group was matched to 40 BCLC-B patients treated (2015-2021) with TACE. Significant differences in baseline characteristics (p <0.0001) and in OS were observed at 1 and 3 years (p <0.0001); a significant difference was also observed in oncological outcomes, in terms of the absence, residual, or relapse of disease (p <0.05). Surgery might be a valid treatment in HCC for patients affected by chronic liver disease in a condition of compensation, up to BCLC-B stage. Surgical indication for liver resection in case of HCC should be extensively revised

    Review of imaging biomarkers for the vulnerable carotid plaque

    Get PDF
    Identification of carotid artery atherosclerosis is conventionally based on measurements of luminal stenosis. However, histopathologic studies demonstrate considerable differences between plaques with identical degrees of stenosis and indicate that certain plaque features are associated with increased risk for ischemic events. As a result of the rapid technological evolution in medical imaging, several important steps have been taken in the field of carotid plaque imaging allowing us to visualize the carotid atherosclerotic plaque and its composition in great detail. For computed tomography, magnetic resonance imaging, positron emission tomography, and ultrasound scan, evidence has accumulated on novel imaging-based markers that confer information on carotid plaque vulnerability, such as intraplaque hemorrhage and lipid-rich necrotic cores. In terms of the imaging-based identification of individuals at high risk of stroke, routine assessments of such imaging markers are the way forward for improving current clinical practice. The current review highlights the main characteristics of the vulnerable plaque indicating their role in the etiology of ischemic stroke as identified by intensive plaque imaging
    corecore