22,003 research outputs found

    Use of cohesive elements in fatigue analysis

    Get PDF
    Cohesive laws describe the resistance to incipient separation of material surfaces. A cohesive finite element is formulated on the basis of a particular cohesive law. Cohesive elements are placed at the boundary between adjacent standard volume finite elements to model fatigue damage that leads to fracture at the separation of the element boundaries per the cohesive law. In this work, a cohesive model for fatigue crack initiation is taken to be the irreversible loadingunloading hysteresis that represents fatigue damage occuring due to cyclic loads leading to the initiation of small cracks. Various cohesive laws are reviewed and one is selected that incorporates a hysteretic cyclic loading that accounts for energetic dissipative mechanisms. A mathematical representation is developed based on an exponential effective load-separation cohesive relationship. A three-dimensional cohesive element is defined using this compliance relationship integrated at four points on the mid-surface of the area element. Implementation into finite element software is discussed and particular attention is applied to numerical convergence issues as the inflection point between loading and 'unloading in the cohesive law is encountered. A simple example of a displacementcontrolled fatigue test is presented in a finite element simulation. Comments are made on applications of the method to prediction of fatigue life for engineering structures such as pressure vessels and piping

    Solar radiation force modeling for TDRS orbit determination

    Get PDF
    The relative orbit determination accuracies resulting from several TDRS models are evaluated. These models include spherical, single-plate, and restricted two-plate models. The plate models can be adjusted in both area and reflectivity through differential correction. The restricted two-plate model has an Earth-pointing plate and a solar plate; the orientation of the solar plate is restricted to rotation about an axis perpendicular to the satellite's orbital plane

    Consistent Gravitationally-Coupled Spin-2 Field Theory

    Full text link
    Inspired by the translational gauge structure of teleparallel gravity, the theory for a fundamental massless spin-2 field is constructed. Accordingly, instead of being represented by a symmetric second-rank tensor, the fundamental spin-2 field is assumed to be represented by a spacetime (world) vector field assuming values in the Lie algebra of the translation group. The flat-space theory naturally emerges in the Fierz formalism and is found to be equivalent to the usual metric-based theory. However, the gravitationally coupled theory, with gravitation itself described by teleparallel gravity, is shown not to present the consistency problems of the spin-2 theory constructed on the basis of general relativity.Comment: 16 pages, no figures. V2: Presentation changes, including addition of a new sub-section, aiming at clarifying the text; version accepted for publication in Class. Quantum Grav

    High-fidelity trapped-ion quantum logic using near-field microwaves

    Full text link
    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated ion trap. We measure a gate fidelity of 99.7(1)\%, which is above the minimum threshold required for fault-tolerant quantum computing. The gate is applied directly to 43^{43}Ca+^+ "atomic clock" qubits (coherence time T2∗≈50 sT_2^*\approx 50\,\mathrm{s}) using the microwave magnetic field gradient produced by a trap electrode. We introduce a dynamically-decoupled gate method, which stabilizes the qubits against fluctuating a.c.\ Zeeman shifts and avoids the need to null the microwave field

    From real materials to model Hamiltonians with density matrix downfolding

    Full text link
    Due to advances in computer hardware and new algorithms, it is now possible to perform highly accurate many-body simulations of realistic materials with all their intrinsic complications. The success of these simulations leaves us with a conundrum: how do we extract useful physical models and insight from these simulations? In this article, we present a formal theory of downfolding--extracting an effective Hamiltonian from first-principles calculations. The theory maps the downfolding problem into fitting information derived from wave functions sampled from a low-energy subspace of the full Hilbert space. Since this fitting process most commonly uses reduced density matrices, we term it density matrix downfolding (DMD).Comment: 24 pages, 12 figures; Huihuo Zheng and Hitesh J. Changlani contributed equally to this wor

    Revisiting the effect of external fields in Axelrod's model of social dynamics

    Get PDF
    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of controversial results. Here we re-examine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one and two-dimensional versions of Axelrod's model indicate that, contrary to previous claims in the literature, the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforces homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state

    Earth-like sand fluxes on Mars

    Get PDF
    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving—implying large sand fluxes—or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar
    • …
    corecore