5,231 research outputs found

    Voltage noise analysis with ring oscillator clocks

    Get PDF
    Voltage noise is the main source of dynamic variability in integrated circuits and a major concern for the design of Power Delivery Networks (PDNs). Ring Oscillators Clocks (ROCs) have been proposed as an alternative to mitigate the negative effects of voltage noise as technology scales down and power density increases. However, their effectiveness highly depends on the design parameters of the PDN, power consumption patterns of the system and spatial locality of the ROCs within the clock domains. This paper analyzes the impact of the PDN parameters and ROC location on the robustness to voltage noise. The capability of reacting instantaneously to unpredictable voltage droops makes ROCs an attractive solution, which allows to reduce the amount of decoupling capacitance without downgrading performance. Tolerance to voltage noise and related benefits can be increased by using multiple ROCs and reducing the size of the clock domains. The analysis shows that up to 83% of the margins for voltage noise and up to 27% of the leakage power can be reduced by using local ROCs.Peer ReviewedPostprint (author's final draft

    La configuración del territorio y el espacio urbano por una universidad policéntrica. Descripción del caso de la Universidad de Sevilla.

    Get PDF
    This article analyses the shaping of land and space by a polycentric university, focusing on the case of the University of Seville, which is scattered throughout the city. It is the objective of this article to present the aforementioned case in order to comment upon and discuss the advantages and drawbacks that have arisen for both the university and city as a result of the university network. The results reveal that the university should be aware of new urban structures and transportation links that are being contemplated for the city as well as the connection with the metropolitan land itself. As such, close collaboration between those who are involved in shaping the land is of the utmost importance

    Large-deviation theory for dilutedWishart random matrices

    Get PDF
    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of dilutedWishart random matrices based on the replica approach of disordered systems.We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x) smaller than x ∈ R+, from which all cumulants of IN(x) and the rate function x (k) controlling its large-deviation probability Prob[IN(x) = kN] e −N x (k) follow. Explicit results for themean value and the variance of IN(x), its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The presentwork establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016)] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices

    Condensation of degrees emerging through a first-order phase transition in classical random graphs

    Get PDF
    Due to their conceptual and mathematical simplicity, Erdös-Rényi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model, and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical result

    Increasing the robustness of digital circuits with ring oscillator clocks

    Get PDF
    Technology scaling enables lower supply voltages, but also increases power density of integrated circuits. In this context, power integrity becomes a major concern in the implementation of highperformance designs. This paper analyzes the influence of Ring Oscillator Clocks (ROCs) on mitigating the impacts of voltage noise. A design with an ROC as the clock source is able to work correctly even in the presence of severe and unpredictable voltage emergencies, without degrading the average performance and power metrics of the circuit. ROCs offer an instantaneous and continuous adaptation to the environment conditions, thus reducing the margins used to prevent timing failures. ROCs provide robustness independently of the power delivery network, thus relaxing the constraints required for the design of the PCB and package. As a by-product, the inherent jitter generated by ROCs produces a spreadspectrum effect that reduces electromagnetic emissions.Peer ReviewedPostprint (published version

    GSK3 and tau: Two convergence points in Alzheimer's disease

    Get PDF
    Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed serine/threonine kinase that plays a key role in the pathogenesis of Alzheimer's disease (AD). GSK3 phosphorylates tau in most serine and threonine residues hyperphosphorylated in paired helical filaments, and GSK3 activity contributes both to amyloid-β production and amyloid-β-mediated neuronal death. Thus, mice generated in our laboratory with conditional overexpression of GSK3 in forebrain neurons (Tet/GSK3β mice) recapitulate aspects of AD neuropathology such as tau hyperphosphorylation, apoptotic neuronal death, and reactive astrocytosis, as well as spatial learning deficit. In this review, we describe recent contributions of our group showing that transgene shutdown in that animal model leads to normal GSK3 activity, normal phospho-tau levels, diminished neuronal death, and suppression of the cognitive deficit, thus further supporting the potential of GSK3 inhibitors for AD therapeutics. In addition, we have combined transgenic mice overexpressing the enzyme GSK3β with transgenic mice expressing tau with a triple FTDP-17 mutation that develop prefibrillar tau-aggregates. Our data suggest that progression of the tauopathy can be prevented by administration of lithium when the first signs of neuropathology appear. Further, it is possible to partially reverse tau pathology in advanced stages of the disease, although the presence of already assembled neurofibrillary tangle-like structures cannot be reversed. © 2013 The authors and IOS Press. All rights reserved.Peer Reviewe
    corecore