89 research outputs found

    A Time Series Analysis of Air Pollution and Preterm Birth in Pennsylvania, 1997–2001

    Get PDF
    Preterm delivery can lead to serious infant health outcomes, including death and lifelong disability. Small increases in preterm delivery risk in relation to spatial gradients of air pollution have been reported, but previous studies may have controlled inadequately for individual factors. Using a time-series analysis, which eliminates potential confounding by individual risk factors that do not change over short periods of time, we investigated the effect of ambient outdoor particulate matter with diameter ≤10 μm (PM(10)) and sulfur dioxide on risk for preterm delivery. Daily counts of preterm births were obtained from birth records in four Pennsylvania counties from 1997 through 2001. We observed increased risk for preterm delivery with exposure to average PM(10) and SO(2) in the 6 weeks before birth [respectively, relative risk (RR) = 1.07; 95% confidence interval (CI), 0.98–1.18 per 50 μg/m(3) increase; RR = 1.15; 95% CI, 1.00–1. 32 per 15 ppb increase], adjusting for long-term preterm delivery trends, co-pollutants, and offsetting by the number of gestations at risk. We also examined lags up to 7 days before the birth and found an acute effect of exposure to PM(10) 2 days and 5 days before birth (respectively, RR = 1.10; 95% CI, 1.00–1.21; RR = 1.07; 95% CI, 0.98–1.18) and SO(2) 3 days before birth (RR = 1.07; 95% CI, 0.99–1.15), adjusting for covariates, including temperature, dew point temperature, and day of the week. The results from this time-series analysis, which provides evidence of an increase in preterm birth risk with exposure to PM(10) and SO(2), are consistent with prior investigations of spatial contrasts

    The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993–2005

    Get PDF
    BACKGROUND: The impact of dust storms on human health has been studied in the context of Asian, Saharan, Arabian, and Australian storms, but there has been no recent population-level epidemiological research on the dust storms in North America. The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century. OBJECTIVES: We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005. METHODS: Dust storm incidence data, including date and approximate location, are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Distributed lag conditional logistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-accidental). RESULTS: We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% CI: 1.6, 13.5; p = 0.011) and 6.7% (95% CI: 1.1, 12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% CI: 0.4, 5.1; p = 0.023) over lags 0-5 compared with referent days. Significant associations with non-accidental mortality were estimated for California (lag 2 and 0-5 day) and Arizona (lag 3), for cardiovascular mortality in the United States (lag 2) and Arizona (lag 3), and for other non-accidental mortality in California (lags 1-3 and 0-5). CONCLUSIONS: Dust storms are associated with increases in lagged non-accidental and cardiovascular mortality. Citation: Crooks JL, Cascio WE, Percy MS, Reyes J, Neas LM, Hilborn ED. 2016. The association between dust storms and daily non-accidental mortality in the United States, 1993-2005. Environ Health Perspect 124:1735-1743; http://dx.doi.org/10.1289/EHP216

    Ambient PM2.5 Exposure Up-regulates the Expression of Costimulatory Receptors on Circulating Monocytes in Diabetic Individuals

    Get PDF
    BACKGROUND: Exposure of humans to air pollutants such as ozone and particulate matter (PM) may result in airway and systemic inflammation and altered immune function. One putative mechanism may be through modification of cell-surface costimulatory molecules. OBJECTIVES: We examined whether changes in expression of costimulatory molecules on circulating cells are associated with ambient levels of fine PM [aerodynamic diameter ≤ 2.5 μm (PM2.5)] in a susceptible population of diabetic individuals. METHODS: Twenty subjects were studied for 4 consecutive days. Daily measurements of PM2.5 and meteorologic data were acquired on the rooftop of the exam site. Circulating cell-surface markers that mediate innate immune and inflammatory responses were assessed by flow cytometry on each day. Sensitivity analysis was conducted on glutathione S-transferase M1 (GSTM1) genotype, body mass index, and glycosylated hemoglobin A1c (HbA1c) levels to determine their role as effect modifiers. Data were analyzed using random effects models adjusting for season, weekday, and meteorology. RESULTS: We found significantly increased monocyte expression (mean fluorescent intensity) of CD80, CD40, CD86, HLA-DR, and CD23 per 10-μg/m3 increase in PM2.5 at 2- to 4-day lag times after exposure. These findings were significantly higher in obese individuals, in individuals with HbA1c > 7%, and in participants who were GSTM1 null. CONCLUSIONS: Exposure to PM2.5 can enhance antigen-presenting cell phenotypes on circulating cells, which may have consequences in the development of allergic or autoimmune diseases. These effects are amplified in diabetic individuals with characteristics that are associated with insulin resistance or with oxidative stress

    Association of cardiac and vascular changes with ambient PMin diabetic individuals

    Get PDF
    Background and Objective Exposure to fine airborne particles (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiological studies suggest that individuals with diabetes may be a particularly susceptible population. This study examined effects of short-term exposures to ambient PM2.5 on markers of systemic inflammation, coagulation, autonomic control of heart rate, and repolarization in 22 adults (mean age: 61 years) with type 2 diabetes. Methods Each individual was studied for four consecutive days with daily assessments of plasma levels of blood markers. Cardiac rhythm and electrocardiographic parameters were examined at rest and with 24-hour ambulatory ECG monitors. PM2.5 and meteorological data were measured daily on the rooftop of the patient exam site. Data were analyzed with models adjusting for season, weekday, meteorology, and a random intercept. To identify susceptible subgroups, effect modification was analyzed by clinical characteristics associated with insulin resistance as well as with oxidative stress and by medication intake. Results Interleukin (IL)-6 and tumor necrosis factor alpha showed a significant increase with a lag of two days (percent change of mean level: 20.2% with 95%-confidence interval [6.4; 34.1] and 13.1% [1.9; 24.4], respectively) in association with an increase of 10 μg/m3 in PM2.5. Obese participants as well as individuals with elevated glycosylated hemoglobin, lower adiponectin, higher ferritin or with glutathione S-transferase M1 null genotype showed higher IL-6 effects. Changes in repolarization were found immediately as well as up to four days after exposure in individuals without treatment with a beta-adrenergic receptor blocker. Conclusions Exposure to elevated levels of PM2.5 alters ventricular repolarization and thus may increase myocardial vulnerability to arrhythmias. Exposure to PM2.5 also increases systemic inflammation. Characteristics associated with insulin resistance or with oxidative stress were shown to enhance the association

    Induction of Asthma and the Environment: What We Know and Need to Know

    Get PDF
    The prevalence of asthma has increased dramatically over the last 25 years in the United States and in other nations as a result of ill-defined changes in living conditions in modern society. On 18 and 19 October 2004 the U.S. Environmental Protection Agency and the National Institute of Environmental Health Sciences sponsored the workshop “Environmental Influences on the Induction and Incidence of Asthma” to review current scientific evidence with respect to factors that may contribute to the induction of asthma. Participants addressed two broad questions: a) What does the science suggest that regulatory and public health agencies could do now to reduce the incidence of asthma? and b) What research is needed to improve our understanding of the factors that contribute to the induction of asthma and our ability to manage this problem? In this article (one of four articles resulting from the workshop), we briefly characterize asthma and its public health and economic impacts, and intervention strategies that have been successfully used to prevent induction of asthma in the workplace. We conclude with the findings of seven working groups that focus on ambient air, indoor pollutants (biologics), occupational exposures, early life stages, older adults, intrinsic susceptibility, and lifestyle. These groups found strong scientific support for public health efforts to limit in utero and postnatal exposure to cigarette smoke. However, with respect to other potential types of interventions, participants noted many scientific questions, which are summarized in this article. Research to address these questions could have a significant public health and economic impact that would be well worth the investment

    Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance

    Get PDF
    Background: In June 2008, burning peat deposits produced haze and air pollution far in excess of National Ambient Air Quality Standards, encroaching on rural communities of eastern North Carolina. Although the association of mortality and morbidity with exposure to urban air pollution is well established, the health effects associated with exposure to wildfire emissions are less well understood. Objective: We investigated the effects of exposure on cardiorespiratory outcomes in the population affected by the fire. Methods: We performed a population-based study using emergency department (ED) visits reported through the syndromic surveillance program NC DETECT (North Carolina Disease Event Tracking and Epidemiologic Collection Tool). We used aerosol optical depth measured by a satellite to determine a high-exposure window and distinguish counties most impacted by the dense smoke plume from surrounding referent counties. Poisson log-linear regression with a 5-day distributed lag was used to estimate changes in the cumulative relative risk (RR). Results: In the exposed counties, significant increases in cumulative RR for asthma [1.65 (95% confidence interval, 1.25–2.1)], chronic obstructive pulmonary disease [1.73 (1.06–2.83)], and pneumonia and acute bronchitis [1.59 (1.07–2.34)] were observed. ED visits associated with cardiopulmonary symptoms [1.23 (1.06–1.43)] and heart failure [1.37 (1.01–1.85)] were also significantly increased. Conclusions: Satellite data and syndromic surveillance were combined to assess the health impacts of wildfire smoke in rural counties with sparse air-quality monitoring. This is the first study to demonstrate both respiratory and cardiac effects after brief exposure to peat wildfire smoke

    Association of cardiac and vascular changes with ambient PM2.5 in diabetic individuals

    Get PDF
    Abstract: Background and Objective: Exposure to fine airborne particles (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiological studies suggest that individuals with diabetes may be a particularly susceptible population. This study examined effects of short-term exposures to ambient PM2.5 on markers of systemic inflammation, coagulation, autonomic control of heart rate, and repolarization in 22 adults (mean age: 61 years) with type 2 diabetes. Methods: Each individual was studied for four consecutive days with daily assessments of plasma levels of blood markers. Cardiac rhythm and electrocardiographic parameters were examined at rest and with 24-hour ambulatory ECG monitors. PM2.5 and meteorological data were measured daily on the rooftop of the patient exam site. Data were analyzed with models adjusting for season, weekday, meteorology, and a random intercept. To identify susceptible subgroups, effect modification was analyzed by clinical characteristics associated with insulin resistance as well as with oxidative stress and by medication intake. Results: Interleukin (IL)-6 and tumor necrosis factor alpha showed a significant increase with a lag of two days (percent change of mean level: 20.2% with 95%-confidence interval [6.4; 34.1] and 13.1% [1.9; 24.4], respectively) in association with an increase of 10 μg/m3 in PM2.5. Obese participants as well as individuals with elevated glycosylated hemoglobin, lower adiponectin, higher ferritin or with glutathione S-transferase M1 null genotype showed higher IL-6 effects. Changes in repolarization were found immediately as well as up to four days after exposure in individuals without treatment with a beta-adrenergic receptor blocker. Conclusions: Exposure to elevated levels of PM2.5 alters ventricular repolarization and thus may increase myocardial vulnerability to arrhythmias. Exposure to PM2.5 also increases systemic inflammation. Characteristics associated with insulin resistance or with oxidative stress were shown to enhance the association

    Variability in childhood allergy and asthma across ethnicity, language, and residency duration in El Paso, Texas: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the impact of migration to the USA-Mexico border city of El Paso, Texas (USA), parental language preference, and Hispanic ethnicity on childhood asthma to differentiate between its social and environmental determinants.</p> <p>Methods</p> <p>Allergy and asthma prevalence was surveyed among 9797 fourth and fifth grade children enrolled in the El Paso Independent School District. Parents completed a respiratory health questionnaire, in either English or Spanish, and a sub-sample of children received spirometry testing at their school. Here we report asthma and allergy outcomes across ethnicity and El Paso residency duration.</p> <p>Results</p> <p>Asthma and allergy prevalence increased with longer duration of El Paso residency independent of ethnicity and preferred language. Compared with immigrants who arrived in El Paso after entering first grade (18%), lifelong El Paso residents (68%) had more prevalent allergy (OR, 1.72; 95% CI, 1.32 - 2.24), prevalent asthma (OR, 1.75; 95% CI, 1.24 - 2.46), and current asthma (OR, 2.01; 95% CI, 1.37 - 2.95). Spirometric measurements (FEV<sub>1</sub>/FVC and FEF<sub>25-75</sub>) also declined with increasing duration of El Paso residency (0.16% and 0.35% annual reduction, respectively).</p> <p>Conclusion</p> <p>These findings suggest that a community-wide environmental exposure in El Paso, delayed pulmonary development, or increased health of immigrants may be associated with allergy and asthma development in children raised there.</p

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    corecore