2,408 research outputs found

    Menstrual phase influences cerebrovascular responsiveness in females but may not affect sex differences

    Get PDF
    Background and aims: Sex differences in the rate and occurrence of cerebrovascular diseases (e.g., stroke) indicate a role for female sex hormones (i.e., oestrogen and progesterone) in cerebrovascular function and regulation. However, it remains unclear how cerebrovascular function differs between the sexes, and between distinct phases of the menstrual cycle. This study aimed to compare cerebrovascular-CO(2) responsiveness in 1) females during the early follicular (EF), ovulatory (O) and mid-luteal (ML) phases of their menstrual cycle; and 2) males compared to females during phases of lower oestrogen (EF) and higher oestrogen (O). Methods: Eleven females (25 ± 5 years) complete experimental sessions in the EF (n = 11), O (n = 9) and ML (n = 11) phases of the menstrual cycle. Nine males (22 ± 3 years) completed two experimental sessions, approximately 2 weeks apart for comparison to females. Middle and posterior cerebral artery velocity (MCAv, PCAv) was measured at rest, during two stages of hypercapnia (2% and 5% CO(2) inhalation) and hypocapnia (voluntary hyperventilation to an end-tidal CO(2) of 30 and 24 mmHg). The linear slope of the cerebral blood velocity response to changes in end-tidal CO(2) was calculated to measure cerebrovascular-CO(2) responsiveness.. Results: In females, MCAv-CO(2) responsiveness to hypocapnia was lower during EF (−.78 ± .45 cm/s/mmHg) when compared to the O phase (−1.17 ± .52 cm/s/mmHg; p < .05) and the ML phase (−1.30 ± .82; p < .05). MCAv-CO(2) responsiveness to hypercapnia and hypo-to-hypercapnia, and PCAv-CO(2) responsiveness across the CO(2) range were similar between menstrual phases (p ≥ .20). MCAv-CO(2) responsiveness to hypo-to hypercapnia was greater in females compared to males (3.12 ± .91 cm/s/mmHg vs. 2.31 ± .46 cm/s/mmHg; p = .03), irrespective of menstrual phase (EF or O). Conclusion: Females during O and ML phases have an enhanced vasoconstrictive capacity of the MCA compared to the EF phase. Additionally, biological sex differences can influence cerebrovascular-CO(2) responsiveness, dependent on the insonated vessel

    Exercising Our Brains, Muscles and Cells to Fight the Ageing Process

    Get PDF
    Life expectancy is increasing, but the time spent in good health (health-span) is not keeping pace, with implications for health, social care, and pensions resulting in estimated costs more than doubling by 2050. Thus, understanding the many factors that contribute to healthy ageing versus frailty, and potential things we can do to promote healthy ageing is important. For example, how does stress, being physically inactive and poor dietary practices affect our body, leading to unhealthy ageing? As part of the 2015 Pint of Science series, researchers interested in brain health, muscle function and the immune system from the School of Sport, Exercise and Rehabilitation Sciences at the University of Birmingham, UK discussed the effects that ageing itself and stress, physical activity and nutrition can have on our health and wellbeing. The objective of our presentation was to question the lifestyle that we lead and discuss realistic alternatives to incorporate healthy activity, such a exercise, into our lifestyles to improve our healthy ageing. Here, we summarise this presentation and illustrate the effectiveness of physical activity for ageing healthily

    Fat Consumption Attenuates Cortical Oxygenation during Mental Stress in Young Healthy Adults

    Get PDF
    Mental stress has been associated with cardiovascular events and stroke, and has also been linked with poorer brain function, likely due to its impact on cerebral vasculature. During periods of stress, individuals often increase their consumption of unhealthy foods, especially high-fat foods. Both high-fat intake and mental stress are known to impair endothelial function, yet few studies have investigated the effects of fat consumption on cerebrovascular outcomes during periods of mental stress. Therefore, this study examined whether a high-fat breakfast prior to a mental stress task would alter cortical oxygenation and carotid blood flow in young healthy adults. In a randomised, counterbalanced, cross-over, postprandial intervention study, 21 healthy males and females ingested a high-fat (56.5 g fat) or a low-fat (11.4 g fat) breakfast 1.5 h before an 8-min mental stress task. Common carotid artery (CCA) diameter and blood flow were assessed at pre-meal baseline, 1 h 15 min post-meal at rest, and 10, 30, and 90 min following stress. Pre-frontal cortex (PFC) tissue oxygenation (near-infrared spectroscopy, NIRS) and cardiovascular activity were assessed post-meal at rest and during stress. Mental stress increased heart rate, systolic and diastolic blood pressure, and PFC tissue oxygenation. Importantly, the high-fat breakfast reduced the stress-induced increase in PFC tissue oxygenation, despite no differences in cardiovascular responses between high- and low-fat meals. Fat and stress had no effect on resting CCA blood flow, whilst CCA diameter increased following consumption of both meals. This is the first study to show that fat consumption may impair PFC perfusion during episodes of stress in young healthy adults. Given the prevalence of consuming high-fat foods during stressful periods, these findings have important implications for future research to explore the relationship between food choices and cerebral haemodynamics during mental stress

    Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise

    Get PDF
    Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially “silences” the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (TCORE) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p &lt; 0.001), and another 0.4°C in HEAT+DEHY ([0.2, 0.5]; p &lt; 0.001, vs. HEAT). Skin temperature also rose 1.2°C more in HEAT than CON ([0.6, 1.8]; p &lt; 0.001), and similarly to HEAT+DEHY (p = 0.922 vs. HEAT). Peak heart rate was 40 b·min−1 higher in HEAT than in CON ([28, 51]; p &lt; 0.001), and another 15 b·min−1 higher in HEAT+DEHY ([3, 27]; p = 0.011, vs. HEAT). Mean arterial pressure at 24-h recovery was not consistently below baseline after CON or HEAT (p ≥ 0.452), but was reduced 4 ± 1 mm Hg after HEAT+DEHY ([0, 8]; p = 0.020 vs. baseline). Plasma volume at 24 h after exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335), but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT). Pooled-trial correlational analysis showed the rise in TCORE predicted the hypotension (r = −0.4) and plasma volume expansion (r = 0.6) at 24 h, with more hypotension reflecting more plasma expansion (r = −0.5). In conclusion, transient dehydration with heat potentiates short-term (24-h) hematological (hypervolemic) and cardiovascular (hypotensive) outcomes following calisthenics

    Nine-, but Not Four-Days Heat Acclimation Improves Self-Paced Endurance Performance in Females

    Get PDF
    Although emerging as a cost and time efficient way to prepare for competition in the heat, recent evidence indicates that “short-term” heat acclimation (&lt;7 days) may not be sufficient for females to adapt to repeated heat stress. Furthermore, self-paced performance following either short-term, or longer (&gt;7 days) heat acclimation has not been examined in a female cohort. Therefore, the aim of this study was to investigate self-paced endurance performance in hot conditions following 4- and 9-days of a high-intensity isothermic heat acclimation protocol in a female cohort. Eight female endurance athletes (mean ± SD, age 27 ± 5 years, mass 61 ± 5 kg, VO2peak 47 ± 6 ml⋅kg⋅min−1) performed 15-min self-paced cycling time trials in hot conditions (35°C, 30%RH) before (HTT1), and after 4-days (HTT2), and 9-days (HTT3) isothermic heat acclimation (HA, with power output manipulated to increase and maintain rectal temperature (Trec) at ∼38.5°C for 90-min cycling in 40°C, 30%RH) with permissive dehydration. There were no significant changes in distance cycled (p = 0.47), mean power output (p = 0.55) or cycling speed (p = 0.44) following 4-days HA (i.e., from HTT1 to HTT2). Distance cycled (+3.2%, p = 0.01; +1.8%, p = 0.04), mean power output (+8.1%, p = 0.01; +4.8%, p = 0.05) and cycling speed (+3.0%, p = 0.01; +1.6%, p = 0.05) were significantly greater in HTT3 than in HTT1 and HTT2, respectively. There was an increase in the number of active sweat glands per cm2 in HTT3 as compared to HTT1 (+32%; p = 0.02) and HTT2 (+22%; p &lt; 0.01), whereas thermal sensation immediately before HTT3 decreased (“Slightly Warm,” p = 0.03) compared to ratings taken before HTT1 (“Warm”) in 35°C, 30%RH. Four-days HA was insufficient to improve performance in the heat in females as observed following 9-days HA

    The intensity paradox:A systematic review and meta‐analysis of its impact on the cardiorespiratory fitness of older adults

    Get PDF
    Aim: The present systematic review and meta‐analysis aimed to compare the effect of moderate‐ versus high‐intensity aerobic exercise on cardiorespiratory fitness (CRF) in older adults, taking into account the volume of exercise completed. Methods: The databases MEDLINE (Ovid), EMBASE (Ovid), and CENTRAL (Cochrane Library) were searched to identify randomized controlled trials (RCTs). Two reviewers extracted data and assessed bias. Comprehensive Meta‐Analysis software calculated overall effect size, intensity differences, and performed meta‐regression analyses using pre‐to‐post intervention or change scores of peak oxygen uptake (V̇O2peak). The review included 23 RCTs with 1332 older adults (intervention group: n = 932; control group: n = 400), divided into moderate‐intensity (435 older adults) and high‐intensity (476 older adults) groups. Results: Meta‐regression analysis showed a moderate, but not significant, relationship between exercise intensity and improvements in V̇O2peak after accounting for the completed exercise volume (β = 0.31, 95% CI = [−0.04; 0.67]). Additionally, studies comparing moderate‐ versus high‐intensity revealed a small, but not significant, effect in favor of high‐intensity (Hedges' g = 0.20, 95% CI = [−0.02; 0.41]). Finally, no significant differences in V̇O2peak improvements were found across exercise groups employing various methods, modalities, and intensity monitoring strategies. Conclusion: Findings challenge the notion that high‐intensity exercise is inherently superior and indicate that regular aerobic exercise, irrespective of the specific approach and intensity, provides the primary benefits to CRF in older adults. Future RCTs should prioritize valid and reliable methodologies for monitoring and reporting exercise volume and adherence among older adults

    Diurnal Variations in Vascular Endothelial Vasodilation Are Influenced by Chronotype in Healthy Humans

    Get PDF
    Introduction: The time of day when cardiovascular events are most likely to occur is thought to be aligned with the circadian rhythm of physiological variables. Chronotype has been shown to influence the time of day when cardiovascular events happen, with early chronotypes reported to be more susceptible in the morning and late chronotypes in the evening. However, no studies have investigated the influence of chronotype on physiological variables responsible for cardiovascular regulation in healthy individuals. Methods: 312 individuals completed the Munich ChronoType Questionnaire to assess chronotype. Twenty participants were randomly selected to continue into the main study. In a repeated-measures experiment, participants were tested between 08:00 and 10:00 h and again between 18:00 and 20:00 h. Measurements of mean arterial pressure, heart rate and vascular endothelial vasodilation via flow-mediated dilatation (FMD) were obtained at each session. Results: Individual diurnal differences in mean arterial pressure and heart rate show no significant relationship with chronotype. Diurnal differences in FMD showed a significant correlation (p = 0.010), driven by a clear significant relationship in the evening and not the morning (p &lt; 0.001). Conclusion: These preliminary data indicate that chronotype influences the diurnal variation of endothelial vasodilation measured using flow-mediated dilatation. Furthermore, we show that the influence of chronotype is much stronger in the evening, highlighting an increased susceptibility for later types. These findings are consistent with the diurnal rhythm in cardiovascular events and uncover potential mechanisms of local mediators that may underpin the influence of chronotype in the onset of these events

    A systematic review and meta-analysis examining whether changing ovarian sex steroid hormone levels influence cerebrovascular function

    Get PDF
    Sex differences in cerebrovascular disease rates indicate a possible role for ovarian sex steroid hormones in cerebrovascular function. To synthesise and identify knowledge gaps, a systematic review and meta-analysis was conducted to assess how ovarian sex steroid hormone changes across the lifespan affect cerebrovascular function in women. Three databases (EMBASE, MEDLINE and Web of Science) were systematically searched for studies on adult cerebrovascular function and ovarian sex steroid hormones. Forty-five studies met pre-defined inclusion criteria. Studied hormone groups included hormone replacement therapy (HRT; n = 17), pregnancy (n = 12), menstrual cycle (n = 7), menopause (n = 5), oral contraception (n = 2), and ovarian hyperstimulation (n = 2). Outcome measures included pulsatility index (PI), cerebral blood flow/velocity (CBF), resistance index (RI), cerebral autoregulation, and cerebrovascular reactivity. Meta-analysis was carried out on HRT studies. PI significantly decreased [−0.05, 95% CI: (−0.10, −0.01); p = 0.01] in post-menopausal women undergoing HRT compared to post-menopausal women who were not, though there was considerable heterogeneity (I2 = 96.8%). No effects of HRT were seen in CBF (p = 0.24) or RI (p = 0.77). This review indicates that HRT improves PI in post-menopausal women. However, there remains insufficient evidence to determine how changing ovarian sex steroid hormone levels affects cerebrovascular function in women during other hormonal phases (e.g., pregnancy, oral contraception)
    corecore