895 research outputs found

    Evidence for Multiple Mergers among Ultraluminous IR Galaxies (ULIRGs): Remnants of Compact Groups?

    Get PDF
    In a large sample of ULIRGs imaged with HST, we have identified a significant subsample that shows evidence for multiple mergers. The evidence is seen among two classes of ULIRGs: (1) those with multiple remnant nuclei in their core, sometimes accompanied by a complex system of tidal tails; and (2) those that are in fact dense groupings of interacting (soon-to-merge) galaxies. We conservatively estimate that, in the redshift range 0.05<z<0.20, at least 20 (out of 99) ULIRGs satisfy one or both of these criteria. We present several cases and discuss the possibility that the progenitors of ULIRGs may be the more classical weakly interacting compact groups of galaxies (Hickson 1997). An evolutionary progression is consistent with the results: from compact groups to pairs to ULIRGs to ellipticals. The last step follows the blowout of gas and dust from the ULIRG.Comment: 5 pages, including 1 color postscript figure. Published in the Astrophysical Journal Letters (1 Feb 2000). Replaced with final edited version, including corrected typos and additional references, plus the color figure has been improved and is only available her

    Ultraluminous infrared galaxies: mergers of sub-L* galaxies?

    Get PDF
    A sample of 27 low-redshift, mostly cool, ultraluminous infrared galaxies (ULIRGs) has been imaged at 1.6 ÎŒm with the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). The majority (67%) of the sample's galaxies are multiple-nucleus galaxies with projected separations of up to 17 kpc, and the rest of the sample (33%) are single-nucleus galaxies, as determined by the NICMOS angular resolution limit. The average observed, integrated (host+nucleus) H magnitude of our HST H sample ULIRGs is -24.3, slightly above that of an L* galaxy (MH = -24.2), and 52% of the sample's galaxies have sub-L* luminosities. The ULIRGs in the HST H sample are not generated as a result of the merging of two luminous (i.e., ≄L*) spiral galaxies. Instead, the interactions and mergers occur in general between two, or in some cases more, less massive sub-L* (0.3-0.5L*) galaxies. Only one out of the 49 nuclei identified in the entire HST H sample has the properties of a bright quasar-like nucleus. On average, the brightest nuclei in the HST H sample galaxies (i.e., cool ULIRGs) are 1.2 mag fainter than warm ULIRGs and low-luminosity Bright Quasar Survey quasars (BQS QSOs) and 2.6 mag fainter than high-luminosity BQS QSOs. Since the progenitor galaxies involved in the merger are sub-L* galaxies, the mass of the central black hole in these ULIRGs would be only about (1-2) × 107 M☉, if the bulge-to-black hole mass ratio of nearby galaxies holds for ULIRGs. The estimated mass of the central black hole is similar to that of nearby Seyfert 2 galaxies but at least 1 order of magnitude lower than the massive black holes thought to be located at the center of high-luminosity QSOs. Massive nuclear starbursts with constant star formation rates of 10-40 M☉ yr-1 could contribute significantly to the nuclear H-band flux and are consistent with the observed nuclear H-band magnitudes of the ULIRGs in the HST H sample. An evolutionary merging scenario is proposed for the generation of the different types of ULIRGs and QSOs on the basis of the masses of the progenitors involved in the merging process. According to this scenario, cool ULIRGs would be the end product of the merging of two or more low-mass (0.3L*-0.5L*) disk galaxies. Warm ULIRGs and low-luminosity QSOs would be generated by a merger involving intermediate-mass (0.5 L*) disk galaxies. Under this scenario, warm ULIRGs could still be the dust-enshrouded phases of UV-bright low-luminosity QSOs, but cool ULIRGs, which are most ULIRGs, would not evolve into QSOs

    The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    Full text link
    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z ~ 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H160_{AB} < 24.0. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z < 1. [abridged]Comment: Accepted for publication in the Astronomical Journal; 54 pages, 21 figures. Figures 10 and 11 are included separately in JPEG forma

    Optical Imaging of Very Luminous Infrared Galaxy Systems: Photometric Properties and Late Evolution

    Full text link
    A sample of 19 low redshift (0.03<<z<<0.07) very luminous infrared galaxy (VLIRG: 1011L⊙<10^{11}L_\odot< L[8-1000 ÎŒ\mum] <1012L⊙ < 10^{12} L_\odot) systems (30 galaxies) has been imaged in BB, VV, and II. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The photometric properties of the sample are also compared with previously studied samples of ULIRGs. The mean observed photometric properties of VLIRG and ULIRG samples, considered as a whole, are indistinguishable at optical wavelengths. This suggests that not only ULIRG, but also the more numerous population of VLIRGs, have similar rest-frame optical photometric properties as the submillimeter galaxies (SMG), reinforcing the connection between low-{\it z} LIRGs -- high-{\it z} SMGs. When the nuclei of the {\it young} and {\it old} interacting systems are considered separately, some differences between the VLIRG and the ULIRG samples are found. In particular, the old VLIRGs are less luminous and redder than old ULIRG systems. If confirmed with larger samples, this behavior suggests that the late-stage evolution is different for VLIRGs and ULIRGs. Specifically, as suggested from spectroscopic data, the present photometric observations support the idea that the activity during the late phases of VLIRG evolution is dominated by starbursts, while a higher proportion of ULIRGs could evolve into a QSO type of object.Comment: 27 pages, 5 figures (degraded to reduce space). Figures 1 and 2 are multiple page figures (i.e. Fig 1a,b and Fig2a-g

    The low-mass content of the massive young star cluster RCW 38

    Get PDF
    KM acknowledges funding by the Joint Committee of ESO/Government of Chile, and by the Science and Technology Foundation of Portugal (FCT), grant no. IF/00194/2015. Part of the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [614922]. RJ acknowledges support from NSERC grants. JA acknowledges funding by the Science and Technology Foundation of Portugal (FCT), grant no. SFRH/BPD/101562/2014.RCW 38 is a deeply embedded young (∌1 Myr), massive star cluster located at a distance of 1.7 kpc. Twice as dense as the Orion nebula cluster, orders of magnitude denser than other nearby star-forming regions and rich in massive stars, RCW 38 is an ideal place to look for potential differences in brown dwarf formation efficiency as a function of environment. We present deep, high-resolution adaptive optics data of the central ∌0.5 × 0.5 pc2 obtained with NACO at the Very Large Telescope. Through comparison with evolutionary models, we determine masses and extinction for ∌480 candidate members, and derive the first initial mass function (IMF) of the cluster extending into the substellar regime. Representing the IMF as a set of power laws in the form dN/dM ∝ M−α, we derive the slope α = 1.60 ± 0.13 for the mass range 0.5–20 M⊙,which is shallower than the Salpeter slope, but in agreement with results in several other young massive clusters. At the low-mass side, we find α = 0.71 ± 0.11 for masses between 0.02 and 0.5 M⊙, or α = 0.81 ± 0.08 for masses between 0.02 and 1 M⊙. Our result is in agreement with the values found in other young star-forming regions, revealing no evidence that a combination of high stellar densities and the presence of numerous massive stars affects the formation efficiency of brown dwarfs and very-low-mass stars. We estimate that the Milky Way galaxy contains between 25 and 100 billion brown dwarfs (with masses >0.03 M⊙).Publisher PDFPeer reviewe

    HST Observations of the Serendipitous X-ray Companion to Mrk 273: Cluster at z=0.46?

    Get PDF
    We have used HST I-band images to identify Mrk 273X, the very unusual high-redshift X-ray-luminous Seyfert 2 galaxy found by ROSAT in the same field-of-view as Mrk 273. We have measured the photometric properties of Mrk 273X and have also analyzed the luminosity distribution of the faint galaxy population seen in the HST image. The luminosity of the galaxy and the properties of the surrounding environment suggest that Mrk 273X is the brightest galaxy in a relatively poor cluster at a redshift near 0.46. Its off-center location in the cluster and the presence of other galaxy groupings in the HST image may indicate that this is a dynamically young cluster on the verge of merging with its neighboring clusters. We find that Mrk 273X is a bright featureless elliptical galaxy with no evidence for a disk. It follows the de Vaucouleurs (r^{1/4}) surface brightness law very well over a range of 8 magnitudes. Though the surface brightness profile does not appear to be dominated by the AGN, the galaxy has very blue colors that do appear to be produced by the AGN. Mrk 273X is most similar to the IC 5063 class of active galaxies --- a hybrid Sy 2 / powerful radio galaxy.Comment: Accepted for publication in the Astrophysical Journal. 8 pages, including 4 postscript figures. Uses emulateapj.sty and psfig.sty. Higher quality version of Figure 1 is available at http://rings.gsfc.nasa.gov/~borne/fig1-markgals.gi

    The Hubble Ultra Deep Field

    Get PDF
    This paper presents the Hubble Ultra Deep Field (HUDF), a one million second exposure of an 11 square minute-of-arc region in the southern sky with the Hubble Space Telescope. The exposure time was divided among four filters, F435W (B435), F606W (V606), F775W (i775), and F850LP (z850), to give approximately uniform limiting magnitudes mAB~29 for point sources. The image contains at least 10,000 objects presented here as a catalog. Few if any galaxies at redshifts greater than ~4 resemble present day spiral or elliptical galaxies. Using the Lyman break dropout method, we find 504 B-dropouts, 204 V-dropouts, and 54 i-dropouts. Using these samples that are at different redshifts but derived from the same data, we find no evidence for a change in the characteristic luminosity of galaxies but some evidence for a decrease in their number densities between redshifts of 4 and 7. The ultraviolet luminosity density of these samples is dominated by galaxies fainter than the characteristic luminosity, and the HUDF reveals considerably more luminosity than shallower surveys. The apparent ultraviolet luminosity density of galaxies appears to decrease from redshifts of a few to redshifts greater than 6. The highest redshift samples show that star formation was already vigorous at the earliest epochs that galaxies have been observed, less than one billion years after the Big Bang.Comment: 44 pages, 18 figures, to appear in the Astronomical Journal October 200

    Morphologies and Spectral Energy Distributions of Extremely Red Galaxies in the GOODS-South Field

    Full text link
    Using U'- through Ks-band imaging data in the GOODS-South field, we construct a large, complete sample of 275 ``extremely red objects'' (EROs; K_s<22.0, R-K_s>3.35; AB), all with deep HST/ACS imaging in B_435, V_606, i_775, and z_850, and well-calibrated photometric redshifts. Quantitative concentration and asymmetry measurements fail to separate EROs into distinct morphological classes. We therefore visually classify the morphologies of all EROs into four broad types: ``Early'' (elliptical-like), ``Late'' (disk galaxies), ``Irregular'' and ``Other'' (chain galaxies and low surface brightness galaxies), and calculate their relative fractions and comoving space densities. For a broad range of limiting magnitudes and color thresholds, the relative number of early-type EROs is approximately constant at 33-44%, and the comoving space densities of Early- and Late-type EROs are comparable. Mean rest-frame spectral energy distributions (SEDs) at wavelengths between 0.1 and 1.2 um are constructed for all EROs. The SEDs are extremely similar in their range of shapes, independent of morphological type. The implication is that any differences between the broad-band SEDs of Early-type EROs and the other types are relatively subtle, and there is no robust way of photometrically distinguishing between different morphological types with usual optical/near-infrared photometry.Comment: Submitted to the ApJL. A version with full-resolution figures, all GOODS data and all GOODS collaboration papers may be found at http://www.stsci.edu/science/goods
    • 

    corecore