1,361 research outputs found
L’intelligenza artificiale applicata al patrimonio culturale. Una innovazione tecnologica per la conservazione e la valorizzazione del patrimomio culturale
Artificial intelligence (AI) represents a promising frontier for cultural heritage, offering new perspectives for conservation, cataloguing, research and valorisation.
AI can allow us to preserve and pass on our cultural roots to future generations. However, a "balanced" approach is needed,
in which technological innovation is embraced while preserving the integrity and value of the works of art and of history itself. With careful management, artificial intelligence can become a valuable tool for preserving and enhancing our cultural heritage for future generations. What are the benefits, challenges and future developments of AI in the context of cultural heritage
Systematic identification of stem-loop containing sequence families in bacterial genomes
<p>Abstract</p> <p>Background</p> <p>Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure.</p> <p>Results</p> <p>The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions.</p> <p>Conclusion</p> <p>Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.</p
Cooperative Intersection Crossing Over 5G
IEEE Autonomous driving is a safety critical application of sensing and decision-making technologies. Communication technologies extend the awareness capabilities of vehicles, beyond what is achievable with the on-board systems only. Nonetheless, issues typically related to wireless networking must be taken into account when designing safe and reliable autonomous systems. The aim of this work is to present a control algorithm and a communication paradigm over 5G networks for negotiating traffic junctions in urban areas. The proposed control framework has been shown to converge in a finite time and the supporting communication software has been designed with the objective of minimizing communication delays. At the same time, the underlying network guarantees reliability of the communication. The proposed framework has been successfully deployed and tested, in partnership with Ericsson AB, at the AstaZero proving ground in Goteborg, Sweden. In our experiments, three heterogeneous autonomous vehicles successfully drove through a 4-way intersection of 235 square meters in an urban scenario
Analytical Creeping Wave Model and Measurements for 60 GHz Body Area Networks
International audienceThe propagation of 60 GHz electromagnetic waves around a human body is studied analytically and experimentally. The body is treated here as a circular lossy cylinder, which is an approximation of the human torso. Analytical formulations based on creeping wave theory are given and discussed for both vertical and horizontal polarizations. An exact path gain expression is derived from analytical formulations and a simpler first order approximation is given. Path gain coefficients are shown for frequencies spanning the world available 60 GHz unlicensed band and for several sizes of the torso. Finally, the results of an experimental campaign conducted in an anechoic chamber to isolate the contribution of on-body propagation are reported. The measurement of the distance dependence of the received power on a brass cylinder and on a human body for both vertical and horizontal polarizations confirmed theoretical predictions
Millington Effect and Propagation Enhancement in 60-GHz Body Area Networks
International audienceMillington effect for on-body propagation enhancement is presented in the 60-GHz band. Millington’s equations are developed to describe propagation above a flat inhomogeneous surface. This study focuses on mixed paths (human skin - metallic) for on-body scenarios. It is shown that adding metallic paths on the human skin can improve the power link budget between two nodes placed on the body. Two different schemes are studied experimentally to assess the analytical model using a flat phantom with electric properties of human skin and different lengths of metallic inserts. The first scheme considers a metallic plate between the transmitting and receiving antennas, while the second scheme proposes locating the metallic plates under the antennas. It is shown that the second scheme yields a better link budget than the first one for the same length of metal. Moreover, a numerical study is performed to assess the impact of the following different parameters: the location of the metal plate, size of the plate and the height of the antennas. Excellent agreement between numerical and experimental results has been shown. In the best cases, the presented techniques allow to improve the path loss of 10 to 20 dB
Polymorphism and ligand binding modulate fast dynamics of human telomeric G-quadruplexes
Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism.In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism andcomplexation on the G4 fast dynamics is mediated by hydration water
Study of the beam dynamics in a linac with the code retar
The three-dimensional fully relativistic and self- consistent code RETAR has been developed to model the dynamics of high-brightness electron beams and, in particular, to assess the importance of the retarded radiative part of the emitted electromagnetic fields in all conditions where the electrons experience strong accelerations. In this analysis we evaluate the radiative energy losses in the electron emission process from the photocathode of an injector, during the successive acceleration of the electron beam in the RF cavity and the focalization due to the magnetic field of the solenoid. The analysis is specifically carried out with parameters of importance in the framework of the SPARC and PLASMONX projects
- …