88 research outputs found

    The Myopathic Protein Myotilin in Developing Mouse and in Muscle Function

    Get PDF
    Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.Myotiliini on lihaksen niin kutsutuissa Z-linjassa sijaitseva proteiini, joka toimii omalta osaltaan lihaksen sarkomeerien rakenteen säilyttäjänä ja organisoijana. Myotiliinimutaatiot aiheuttavat erilaisia lihassairauksia, esimerkiksi Limb-Girdle Muscular Dystrophy ja Myofibrillar Myopathy. Myotiliini sitoutuu itsensä ja erilaisia sarkomeerin proteiinia: alfa-aktiniini, aktiini, filamiini C, FATZ ja ZASP. Väitöskirjassa on kolme töitä. Ensimmäisessä selvitettiin hiiren myotiliini geeni ja promoottori. Toisessa osatyössä kartoitettiin myotiliinin ilmentyminen hiiren ja osaksi myös ihmisen sikiönkehityksen eri vaiheissa. Kolmannessa osatyössä tuotettiin myotiliinin suhteen poistogeeninen hiirimalli ja selvitettiin poiston seuraukset. Työ osoitti ettei myotiliinin suhteen poistogeenisellä hiirellä ole normaali-olosuhteissa poikkeavaa fenotyyppiä, myotiliini ei ole välttämätön/on korvattavissa lihasten sikiönkehityksessä ja toiminnassa

    Structure-activity exploration of a small-molecule allosteric inhibitor of T790M/L858R double mutant EGFR

    Get PDF
    EGFR is a protein kinase whose aberrant activity is frequently involved in the development of non-small lung cancer (NSCLC) drug resistant forms. The allosteric inhibition of this enzyme is currently one among the most attractive approaches to design and develop anticancer drugs. In a previous study, we reported the identification of a hit compound acting as type III allosteric inhibitor of the L858R/T790M double mutant EGFR. Herein, we report the design, synthesis and in vitro testing of a series of analogues of the previously identified hit with the aim of exploring the structure-activity relationships (SAR) around this scaffold. The performed analyses allowed us to identify two compounds 15 and 18 showing improved inhibition of double mutant EGFR with respect to the original hit, as well as interesting antiproliferative activity against H1975 NSCLC cancer cells expressing double mutant EGFR. The newly discovered compounds represent promising starting points for further hit-to-lead optimisation

    Skyline Tensile Forces in Cable Logging: Field Observations vs. Software Calculations

    Get PDF
    Skyline tensile forces have been shown to frequently exceed the recommended safety limits during ordinary cable logging operations. Several models for skyline engineering analyses have been proposed. Although skyline tensile forces assume a dynamic behaviour, practical solutions are based on a static approach without consideration of the dynamic nature of the cable systems. The aim of this study was to compare field data of skyline tensile forces with the static calculations derived by dedicated available software such as SkylineXL. To overcome the limitation of static calculation, this work also aimed to simulate the actual response of the tensile fluctuations measured in the real environment by mean of a finite element model (FEM). Field observations of skyline tensile forces included 103 work cycles, recorded over four different cable lines in standing skyline configuration. Payload estimations, carriages positions, and time study of the logging operations were also collected in the field. The ground profiles and the cable line geometries were analysed using digital elevation models. The field data were then used to simulate the work cycles in SkylineXL. The dynamic response of six fully-suspended loads in a single-span cable line was also simulated by a dedicated FEM built through ANSYS ®. The observed data and the software calculations were then compared. SkylineXL resulted particularly reliable in the prediction of the actual tensile forces, with RMSE ranging between 7.5 and 13.5 KN, linked to an average CV(RMSE) of 7.24%. The reliability in predicting the peak tensile forces was lower, reporting CV(RMSE) of 10.12%, but still not likely resulting in a safety or performance problem. If properly set-up and used, thus, SkylineXL could be considered appropriate for operational and practical purposes. This work, however, showed that finite element models could be successfully used for detailed analysis and simulation of the skyline tensile forces, including the dynamic oscillations due to the motion of the carriage and payload along the cable line. Further developments of this technique could also lead to the physical simulation and analysis of the log-to-ground interaction and the investigation of the breakout force during lateral skidding

    In Vivo Eradication of Human BCR/ABL-Positive Leukemia Cells With an ABLKinase Inhibitor

    Get PDF
    BACKGROUND: The leukemia cells of approximately 95% of patients with chronic myeloid leukemia and 30%-50% of adult patients with acute lymphoblastic leukemia express the Bcr/Abl oncoprotein, which is the product of a fusion gene created by a chromosomal translocation [(9:22) (q34;q11)]. This oncoprotein expresses a constitutive tyrosine kinase activity that is crucial for its cellular transforming activity. In this study, we evaluated the antineoplastic activity of CGP57148B, which is a competitive inhibitor of the Bcr/Abl tyrosine kinase. METHODS: Nude mice were given an injection of the Bcr/Abl-positive human leukemia cell lines KU812 or MC3. Tumor-bearing mice were treated intraperitoneally or orally with CGP57148B according to three different schedules. In vitro drug wash-out experiments and in vivo molecular pharmacokinetic experiments were performed to optimize the in vivo treatment schedule. RESULTS: Treatment schedules administering CGP57148B once or twice per day produced some inhibition of tumor growth, but no tumor-bearing mouse was cured. A single administration of CGP57148B caused substantial (>50%) but short-lived (2-5 hours) inhibition of Bcr/Abl kinase activity. On the basis of the results from in vitro wash-out experiments, 20-21 hours was defined as the duration of continuous exposure needed to block cell proliferation and to induce apoptosis in these two leukemia cell lines. A treatment regimen assuring the continuous block of the Bcr/Abl phosphorylating activity that was administered over an 11-day period cured 87%-100% of treated mice. CONCLUSION: These data indicate that the continuous block of the oncogenic tyrosine kinase of Bcr/Abl protein is needed to produce important biologic effects in viv

    Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase

    Get PDF
    a b s t r a c t RET kinase is aberrantly activated in thyroid cancers and in rare cases of lung and colon cancer, and has been validated as a molecular target in these tumors. Vandetanib was recently approved for the treatment of medullary thyroid cancer. However, vandetanib is ineffective in vitro against RET mutants carrying bulky aminoacids at position 804, the gatekeeper residue, similarly to drug-resistant BCR-ABL mutants in chronic myeloid leukemia. Ponatinib is a multi-target kinase inhibitor that was recently approved for treatment-refractory Philadelphia-positive leukemia. We show here potent inhibition of oncogenic RET by ponatinib, including the drug-insensitive V804M/L mutants. Ponatinib inhibited the growth of RET+ and BCR-ABL+ cells with similar potency, while not affecting RET-negative cells. Both in biochemical and in cellular assays ponatinib compared favorably with known RET inhibitors, such as vandetanib, cabozantinib, sorafenib, sunitinib and motesanib, used as reference compounds. We suggest that ponatinib should be considered for the treatment of RET+ tumors, in particular those expressing vandetanib-resistant V804M/L mutations

    Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes

    Get PDF
    Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance

    Crizotinib in Advanced, Chemoresistant Anaplastic Lymphoma Kinase-Positive Lymphoma Patients

    Get PDF
    Anaplastic lymphoma kinase (ALK)-positive lymphomas respond to chemotherapy, but relapses, which bear a poor prognosis, occur. Crizotinib inhibits ALK in vitro and in vivo and was administered as monotherapy to 11 ALK+ lymphoma patients who were resistant/refractory to cytotoxic therapy. The overall response rate was 10 of 11 (90.9%; 95% confidence interval [CI] = 58.7% to 99.8%). Disease status at the latest follow-up is as follows: four patients are in complete response (CR) (months >21, >30, >35, >40) under continuous crizotinib administration; 4 patients had progression of disease (months 1, 2, 2, 2); 1 patient obtained CR on crizotinib, received an allogeneic bone marrow transplant, and is in CR; 2 patients (treated before and/or after allogeneic bone marrow transplant) obtained and are still in CR but they have stopped crizotinib. Overall and progression-free survival rates at 2 years are 72.7% (95% CI = 39.1% to 94.0%) and 63.7% (95% CI = 30.8% to 89.1%), respectively. ALK mutations conferring resistance to crizotinib in vitro could be identified in relapsed patients. Crizotinib exerted a potent antitumor activity with durable responses in advanced, heavily pretreated ALK+ lymphoma patients, with a benign safety profil

    Characterization of compound 584, an Abl kinase inhibitor with lasting effects

    Get PDF
    Background: Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosomepositive leukemias which is being tackled by the development of new, more potent drugs, such as the dual Src/Abl tyrosine kinase inhibitors dasatinib and bosutinib and the imatinib analog nilotinib. In the current study we describe the design, synthesis and biological properties of an imatinib analog with a chlorine-substituted benzamide, namely compound 584 (cmp-584). Design and Methods: To increase the potency, we rationally designed cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl. cmp-584 was synthesized and characterized in vitro against a panel of 67 serine/threonine and tyrosine kinases using radioactive and enzyme-linked immunosorbent kinase assays. We studied inhibitory cellular activity using Bcr/Abl-positive human cell lines, murine transfectants in proliferation experiments, and a murine xenotransplanted model. Kinase assays on isolated Bcr/Abl protein were also performed. Finally, we used a wash-out approach on whole cells to study the binding kinetics of the inhibitor. Results: cmp-584 showed potent anti-Abl activity both on recombinant protein (IC50: 8 nM) and in cell-based assays (IC50: 0.1-10 nM). The drug maintained inhibitory activity against platelet-derived growth factor receptors and c-KIT and was also active against Lyn (IC50: 301 nM). No other kinase of the panel was inhibited at nanomolar doses. cmp-584 was 20- to 300-fold more active than imatinib in cells. This superior activity was evident in intact cells, in which full-length Bcr-Abl is present. In vivo experiments confirmed the activity of cmp-584. Wash-out experiments showed that short exposure to the drug impaired cell proliferation and Bcr-Abl phosphorylation for a substantially longer period of time than imatinib. Conclusions: The present results suggest a slower off-rate (dissociation rate) of cmp-584 compared to imatinib as an explanation for the increased cellular activity of the former. ©2008 Ferrata Storti Foundation

    Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency.

    Get PDF
    Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.We thank Maria Stella Scalzo for technical support, Dr Emanuela Colombo for kindly providing MEFs that lack NPM1 (MEF NPM−/−p53−/−) and control fibroblasts (MEF p53−/−), Dr Guido Serini for the use of his confocal microscopy unit at the Candiolo Cancer Institute—IRCCS, Torino, Italy. We also thank Ariad Pharmaceutical, Pfizer, Astellas and Novartis that kindly provided all drugs used in this study. This work was supported by the Regione Lombardia (ID14546A) and Fondazione Berlucchi Onlus Grant 2014 (to CGP), and by grants FP7 ERC-2009-StG (Proposal No. 242965—‘Lunely’); Associazione Italiana per la Ricerca sul Cancro (AIRC) Grant IG-12023; Koch Institute/DFCC Bridge Project Fund; Ellison Foundation Boston; Worldwide Cancer Research Association (former AICR) grant 12-0216; the Grant for Oncology Innovation by Merck-Serono and R01 CA196703-01 (to RC).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/onc.2015.45

    Integrated Genomic, Functional, and Prognostic Characterization of Atypical Chronic Myeloid Leukemia

    Get PDF
    Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival
    corecore